Как решать уравнение с 6 степенью. Уравнения высших степеней по математике. Уравнения высшей степени с целыми коэффициентами

Методы решения алгебраических уравнений высших степеней.

Хабибуллина Альфия Якубовна ,

учитель математики высшей категории МБОУ СОШ №177

города Казани, Заслуженный учитель Республики Татарстан,

кандидат педагогических наук.

Определение 1. Алгебраическим уравнением степени n называется уравнение вида P n (x)=0, где P n (x) - многочлен степени n, т.е. P n (x)= a 0 x n +a 1 x n-1 +…+a n-1 x+a n a 0.

Определение 2. Корень уравнения – числовое значение переменной х, которое при подстановке в данное уравнение дает верное равенство.

Определение 3. Решить уравнение означает найти все его корни или доказать, что их нет.

I. Метод разложения многочлена на множители с последующим дроблением .

Уравнение можно разложить на множители и решить методом дробления, то есть, разбивая на совокупность уравнений меньших степеней.

Замечание : вообще, при решении уравнения методом дробления не следует забывать, что произведение равно нулю тогда, и только тогда, когда хотя бы один из множителей равен нулю, а другие при этом сохраняют смысл.

Пути разложения многочлена на множители :

1. Вынесение общего множителя за скобки.

2. Квадратный трехчлен можно разложить на множители с помощью формулы ах 2 +вх+с=а(х-х 1 )(х-х 2 ), где а0, х 1 и х 2 – корни квадратного трехчлена.

3. Использование формул сокращенного умножения :

а n – в n = (а - в)(а n-1 + Сn- 2 а n-2 в + Сn- 3 а n-3 в + …+ С 1 а в n-2 +в n-1), nN.

Выделение полного квадрата . Многочлен можно разложить на множители с помощью формулы разности квадратов, предварительно выделив полный квадрат суммы или разности выражений.

4. Группировка (в сочетании с вынесением общего множителя за скобки).

5. Использование следствия теоремы Безу .

1)если уравнение а 0 х n + a 1 x n-1 +…+ a n-1 x + a n = 0 , a 0 0 c целыми коэффициентами имеет рациональный корень х 0 = (где - несократимая дробь, p
q
), то p –делитель свободного члена a n , а q – делитель старшего коэффициента a 0 .

2)если х = х 0 – корень уравнения Р n (х) = 0, то Р n (х) = 0 равносильно уравнению

(х – х 0)Р n-1 (х)=0, где Р n-1 (х) – многочлен, который можно найти при делении

Р n (х) на (х – х 0) “уголком” или методом неопределенных коэффициентов.

II . Метод введения новой переменной (Подстановка )

Рассмотрим уравнение f(x)=g(x). Оно равносильно уравнению f(x)-g(х) = 0. Обозначим разность f(x)-g(х) = h(р (x)), причем
. Введем замену t=р (x) (функция t= р(x) называется подстановка ). Тогда получим уравнение h(р (x)) =0 или h(t)=0 , решив последнее уравнение, находим t 1 , t 2 , … Вернувшись в подстановку р(x)=t 1 , р(x)=t 2 ,…, находим значения переменной х.

III Метод строгой монотонности.

Теорема. Если у= f(x) строго монотонна на P, то уравнение f(x)=а (а - const) имеет на множестве Р не более одного корня. (Функция строго монотонная: либо только убывающая, либо только возрастающая)

Замечание. Можно использовать модификацию этого метода. Рассмотрим уравнение f(x)=g(x). Если функция у= f(x) монотонно убывает на P, а функция у= g(x) монотонно убывает на Р (или наоборот), то уравнение f(x)=g(x) имеет на множестве Р не более одного корня.

IV . Метод сравнения множества значений обеих частей уравнения (метод оценки)

Теорема Если для любого x из множества P выполняются неравенства f(x)а, и g(x)а, то уравнение f(x)=g(x) на множестве Р равносильно системе
.

Следствие : Если на множестве Р
или
, то уравнение f(x)=g(x) не имеет корней.

Этот метод достаточно эффективен при решении трансцендентных уравнений

V . Метод перебора делителей крайних коэффициентов

Рассмотрим уравнение a 0 x n +a 1 x n-1 +…+a n-1 x+a n = 0

Теорема. Если x 0 = - корень алгебраического уравнения степени n, а i – целые коэффициенты, то p – делитель свободного члена а n , а q – делитель старшего коэффициента a 0 . При а 0 =1 x 0 =p (делитель свободного члена).

Следствие теоремы Безу: Если х 0 – корень алгебраического уравнения, то P n (x) делится на (x-x 0) без остатка, т.е P n (x)=(x-x 0)Q n-1 (x).

VI Метод неопределенных коэффициентов.

Он базируется на следующих утверждениях:

два многочлена тождественно равны тогда и только тогда, когда равны их коэффициенты при одинаковых степенях х.

любой многочлен третьей степени разлагается в произведение двух множителей: линейного и квадратного.

любой многочлен четвертой степени разлагается в произведение двух многочленов

второй степени.

VII. Схема Горнера .

С помощью таблицы коэффициентов по алгоритму Горнера подбором находятся корни уравнения среди делителей свободного члена.

VIII . Метод производных.

Теорема. Если 2 многочлена P(x) и Q(x) имеют тождественно равные производные, то существует такая С- const, что P(x)=Q(x)+С для xR.

Tеорема . Если
(x) и
(x) делятся на
, то
(x) делится на
.

Следствие : Если
(x) и
(x) делятся на многочлен R(x) , то
(x) делится на (x), а наибольший общий делитель многочленов
(x) и
(x)имеет корни, являющиеся лишь корнями многочлена
(x) кратностью не менее 2.

IX . Симметрические, возвратные уравнения .

Определение . Уравнение a 0 x n +a 1 x n-1 +…+a n-1 x+a n = 0 называется симметрическим , если

1. Рассмотрим случай, когда n-четное, n =2k. Если
, тогда x = 0 не является корнем уравнения, что дает право разделить уравнение на

0
+
+
+=0 Введем замену t=
и, учитывая лемму, решим квадратное уравнение относительно переменной t. Обратная подстановка даст решение относительно переменной х.

2. Рассмотрим случай, когда n-нечетное, n=2k+1. Тогда = -1 является корнем уравнения. Разделим уравнение на
и получаем случай 1.. Обратная подстановка позволяет найти значения х. Заметим, что при m=-1 уравнение называется Преобразуем алгебраическое уравнение P n (x)=0 (где P n (x)- многочлен степени n) в уравнение вида f(x)=g(x). Зададим функции у=f(x), у=g(x); опишем их свойства и построим графики в одной системе координат. Абсциссы точек пересечения будут являться корнями уравнения. Проверка выполняется подстановкой в исходное уравнение.


Рассмотрим решения уравнений с одной переменной степени выше второй.

Степенью уравнения Р(х) = 0 называется степень многочлена Р(х), т.е. наибольшая из степеней его членов с коэффициентом, не равным нулю.

Так, например, уравнение (х 3 – 1) 2 + х 5 = х 6 – 2 имеет пятую степень, т.к. после операций раскрытия скобок и приведения подобных получим равносильное уравнение х 5 – 2х 3 + 3 = 0 пятой степени.

Вспомним правила, которые понадобятся для решения уравнений степени выше второй.

Утверждения о корнях многочлена и его делителях:

1. Многочлен n-й степени имеет число корней не превышающее число n, причем корни кратности m встречаются ровно m раз.

2. Многочлен нечетной степени имеет хотя бы один действительный корень.

3. Если α – корень Р(х), то Р n (х) = (х – α) · Q n – 1 (x), где Q n – 1 (x) – многочлен степени (n – 1).

4.

5. Приведенный многочлен с целыми коэффициентами не может иметь дробных рациональных корней.

6. Для многочлена третьей степени

Р 3 (х) = ах 3 + bx 2 + cx + d возможно одно из двух: либо он разлагается в произведение трех двучленов

Р 3 (x) = а(х – α)(х – β)(х – γ), либо разлагается в произведение двучлена и квадратного трехчлена Р 3 (x) = а(х – α)(х 2 + βх + γ).

7. Любой многочлен четвертой степени раскладывается в произведение двух квадратных трехчленов.

8. Многочлен f(x) делится на многочлен g(х) без остатка, если существует многочлен q(x), что f(x) = g(x) · q(x). Для деления многочленов применяется правило «деления уголком».

9. Для делимости многочлена P(x) на двучлен (x – c) необходимо и достаточно, чтобы число с было корнем P(x) (Следствие теоремы Безу).

10. Теорема Виета: Если х 1 , х 2 , …, х n – действительные корни многочлена

Р(х) = а 0 х n + а 1 х n - 1 + … + а n , то имеют место следующие равенства:

х 1 + х 2 + … + х n = -а 1 /а 0 ,

х 1 · х 2 + х 1 · х 3 + … + х n – 1 · х n = a 2 /а 0 ,

х 1 · х 2 · х 3 + … + х n – 2 · х n – 1 · х n = -a 3 / а 0 ,

х 1 · х 2 · х 3 · х n = (-1) n a n / а 0 .

Решение примеров

Пример 1.

Найти остаток от деления Р(х) = х 3 + 2/3 x 2 – 1/9 на (х – 1/3).

Решение.

По следствию из теоремы Безу: «Остаток от деления многочлена на двучлен (х – с) равен значению многочлена от с». Найдем Р(1/3) = 0. Следовательно, остаток равен 0 и число 1/3 – корень многочлена.

Ответ: R = 0.

Пример 2.

Разделить «уголком» 2х 3 + 3x 2 – 2х + 3 на (х + 2). Найти остаток и неполное частное.

Решение:

2х 3 + 3x 2 – 2х + 3| х + 2

2х 3 + 4 x 2 2x 2 – x

X 2 – 2 x

Ответ: R = 3; частное: 2х 2 – х.

Основные методы решения уравнений высших степеней

1. Введение новой переменной

Метод введения новой переменной уже знаком на примере биквадратных уравнений. Он заключается в том, что для решения уравнения f(x) = 0 вводят новую переменную (подстановку) t = x n или t = g(х) и выражают f(x) через t, получая новое уравнение r(t). Решая затем уравнение r(t), находят корни:

(t 1 , t 2 , …, t n). После этого получают совокупность n уравнений q(x) = t 1 , q(x) = t 2 , … , q(x) = t n , из которых находят корни исходного уравнения.

Пример 1.

(х 2 + х + 1) 2 – 3х 2 – 3x – 1 = 0.

Решение:

(х 2 + х + 1) 2 – 3(х 2 + x) – 1 = 0.

(х 2 + х + 1) 2 – 3(х 2 + x + 1) + 3 – 1 = 0.

Замена (х 2 + х + 1) = t.

t 2 – 3t + 2 = 0.

t 1 = 2, t 2 = 1. Обратная замена:

х 2 + х + 1 = 2 или х 2 + х + 1 = 1;

х 2 + х - 1 = 0 или х 2 + х = 0;

Ответ: Из первого уравнения: х 1, 2 = (-1 ± √5)/2, из второго: 0 и -1.

2. Разложение на множители методом группировки и формул сокращенного умножения

Основа данного метода также не нова и заключается в группировке слагаемых таким образом, чтобы каждая группа содержала общий множитель. Для этого иногда приходится применять некоторые искусственные приемы.

Пример 1.

х 4 – 3x 2 + 4х – 3 = 0.

Решение.

Представим - 3x 2 = -2x 2 – x 2 и сгруппируем:

(х 4 – 2x 2) – (x 2 – 4х + 3) = 0.

(х 4 – 2x 2 +1 – 1) – (x 2 – 4х + 3 + 1 – 1) = 0.

(х 2 – 1) 2 – 1 – (x – 2) 2 + 1 = 0.

(х 2 – 1) 2 – (x – 2) 2 = 0.

(х 2 – 1 – х + 2)(х 2 – 1 + х - 2) = 0.

(х 2 – х + 1)(х 2 + х – 3) = 0.

х 2 – х + 1 = 0 или х 2 + х – 3 = 0.

Ответ: В первом уравнении нет корней, из второго: х 1, 2 = (-1 ± √13)/2.

3. Разложение на множитель методом неопределенных коэффициентов

Суть метода состоит в том, что исходный многочлен раскладывается на множители с неизвестными коэффициентами. Используя свойство, что многочлены равны, если равны их коэффициенты при одинаковых степенях, находят неизвестные коэффициенты разложения.

Пример 1.

х 3 + 4x 2 + 5х + 2 = 0.

Решение.

Многочлен 3-й степени можно разложить в произведение линейного и квадратного множителей.

х 3 + 4x 2 + 5х + 2 = (х – а)(x 2 + bх + c),

х 3 + 4x 2 + 5х + 2 = х 3 +bx 2 + cх – ax 2 – abх – ac,

х 3 + 4x 2 + 5х + 2 = х 3 + (b – a)x 2 + (cх – ab)х – ac.

Решив систему:

{b – a = 4,
{c – ab = 5,
{-ac = 2,

{a = -1,
{b = 3,
{c = 2, т.е.

х 3 + 4x 2 + 5х + 2 = (х + 1)(x 2 + 3х + 2).

Корни уравнения (х + 1)(x 2 + 3х + 2) = 0 находятся легко.

Ответ: -1; -2.

4. Метод подбора корня по старшему и свободному коэффициенту

Метод опирается на применение теорем:

1) Всякий целый корень многочлена с целыми коэффициентами является делителем свободного члена.

2) Для того, чтобы несократимая дробь p/q (p – целое, q – натуральное) была корнем уравнения с целыми коэффициентами, необходимо, чтобы число p было целым делителем свободного члена а 0 , а q – натуральным делителем старшего коэффициента.

Пример 1.

6х 3 + 7x 2 – 9х + 2 = 0.

Решение:

6: q = 1, 2, 3, 6.

Следовательно, p/q = ±1, ±2, ±1/2, ±1/3, ±2/3, ±1/6.

Найдя один корень, например – 2, другие корни найдем, используя деление уголком, метод неопределенных коэффициентов или схему Горнера.

Ответ: -2; 1/2; 1/3.

Остались вопросы? Не знаете, как решать уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В общем случае уравнение, имеющее степень выше 4 , нельзя разрешить в радикалах. Но иногда мы все же можем найти корни многочлена, стоящего слева в уравнении высшей степени, если представим его в виде произведения многочленов в степени не более 4 -х. Решение таких уравнений базируется на разложении многочлена на множители, поэтому советуем вам повторить эту тему перед изучением данной статьи.

Чаще всего приходится иметь дело с уравнениями высших степеней с целыми коэффициентами. В этих случаях мы можем попробовать найти рациональные корни, а потом разложить многочлен на множители, чтобы потом преобразовать его в уравнение более низкой степени, которое будет просто решить. В рамках этого материала мы рассмотрим как раз такие примеры.

Уравнения высшей степени с целыми коэффициентами

Все уравнения, имеющие вид a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = 0 , мы можем привести к уравнению той же степени с помощью умножения обеих частей на a n n - 1 и осуществив замену переменной вида y = a n x:

a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = 0 a n n · x n + a n - 1 · a n n - 1 · x n - 1 + … + a 1 · (a n) n - 1 · x + a 0 · (a n) n - 1 = 0 y = a n x ⇒ y n + b n - 1 y n - 1 + … + b 1 y + b 0 = 0

Те коэффициенты, что получились в итоге, также будут целыми. Таким образом, нам нужно будет решить приведенное уравнение n-ной степени с целыми коэффициентами, имеющее вид x n + a n x n - 1 + … + a 1 x + a 0 = 0 .

Вычисляем целые корни уравнения. Если уравнение имеет целые корни, нужно искать их среди делителей свободного члена a 0 . Выпишем их и будем подставлять в исходное равенство по очереди, проверяя результат. Как только мы получили тождество и нашли один из корней уравнения, то можем записать его в виде x - x 1 · P n - 1 (x) = 0 . Здесь x 1 является корнем уравнения, а P n - 1 (x) представляет собой частное от деления x n + a n x n - 1 + … + a 1 x + a 0 на x - x 1 .

Подставляем остальные выписанные делители в P n - 1 (x) = 0 , начав с x 1 , поскольку корни могут повторяться. После получения тождества корень x 2 считается найденным, а уравнение может быть записано в виде (x - x 1) (x - x 2) · P n - 2 (x) = 0 .Здесь P n - 2 (x) будет частным от деления P n - 1 (x) на x - x 2 .

Продолжаем и дальше перебирать делители. Найдем все целые корни и обозначим их количество как m . После этого исходное уравнение можно представить как x - x 1 x - x 2 · … · x - x m · P n - m (x) = 0 . Здесь P n - m (x) является многочленом n - m -ной степени. Для подсчета удобно использовать схему Горнера.

Если у нас исходное уравнение имеет целые коэффициенты, мы не можем получить в итоге дробные корни.

У нас в итоге получилось уравнение P n - m (x) = 0 , корни которого могут быть найдены любым удобным способом. Они могут быть иррациональными или комплексными.

Покажем на конкретном примере, как применяется такая схема решения.

Пример 1

Условие: найдите решение уравнения x 4 + x 3 + 2 x 2 - x - 3 = 0 .

Решение

Начнем с нахождений целых корней.

У нас есть свободный член, равный минус трем. У него есть делители, равные 1 , - 1 , 3 и - 3 . Подставим их в исходное уравнение и посмотрим, какие из них дадут в итоге тождества.

При x , равном единице, мы получим 1 4 + 1 3 + 2 · 1 2 - 1 - 3 = 0 , значит, единица будет корнем данного уравнения.

Теперь выполним деления многочлена x 4 + x 3 + 2 x 2 - x - 3 на (х - 1) в столбик:

Значит, x 4 + x 3 + 2 x 2 - x - 3 = x - 1 x 3 + 2 x 2 + 4 x + 3 .

1 3 + 2 · 1 2 + 4 · 1 + 3 = 10 ≠ 0 (- 1) 3 + 2 · (- 1) 2 + 4 · - 1 + 3 = 0

У нас получилось тождество, значит, мы нашли еще один корень уравнения, равный - 1 .

Делим многочлен x 3 + 2 x 2 + 4 x + 3 на (х + 1) в столбик:

Получаем, что

x 4 + x 3 + 2 x 2 - x - 3 = (x - 1) (x 3 + 2 x 2 + 4 x + 3) = = (x - 1) (x + 1) (x 2 + x + 3)

Подставляем очередной делитель в равенство x 2 + x + 3 = 0 , начиная с - 1:

1 2 + (- 1) + 3 = 3 ≠ 0 3 2 + 3 + 3 = 15 ≠ 0 (- 3) 2 + (- 3) + 3 = 9 ≠ 0

Равенства, полученные в итоге, будут неверными, значит, у уравнения больше нет целых корней.

Оставшиеся корни будут корнями выражения x 2 + x + 3 .

D = 1 2 - 4 · 1 · 3 = - 11 < 0

Из этого следует, что у данного квадратного трехчлена нет действительных корней, но есть комплексно сопряженные: x = - 1 2 ± i 11 2 .

Уточним, что вместо деления в столбик можно применять схему Горнера. Это делается так: после того, как мы определили первый корень уравнения, заполняем таблицу.

В таблице коэффициентов мы сразу можем увидеть коэффициенты частного от деления многочленов, значит, x 4 + x 3 + 2 x 2 - x - 3 = x - 1 x 3 + 2 x 2 + 4 x + 3 .

После нахождения следующего корня, равного - 1 , мы получаем следующее:

Ответ: х = - 1 , х = 1 , x = - 1 2 ± i 11 2 .

Пример 2

Условие: решите уравнение x 4 - x 3 - 5 x 2 + 12 = 0 .

Решение

У свободного члена есть делители 1 , - 1 , 2 , - 2 , 3 , - 3 , 4 , - 4 , 6 , - 6 , 12 , - 12 .

Проверяем их по порядку:

1 4 - 1 3 - 5 · 1 2 + 12 = 7 ≠ 0 (- 1) 4 - (- 1) 3 - 5 · (- 1) 2 + 12 = 9 ≠ 0 2 4 · 2 3 - 5 · 2 2 + 12 = 0

Значит, x = 2 будет корнем уравнения. Разделим x 4 - x 3 - 5 x 2 + 12 на х - 2 , воспользовавшись схемой Горнера:

В итоге мы получим x - 2 (x 3 + x 2 - 3 x - 6) = 0 .

2 3 + 2 2 - 3 · 2 - 6 = 0

Значит, 2 опять будет корнем. Разделим x 3 + x 2 - 3 x - 6 = 0 на x - 2:

В итоге получим (x - 2) 2 · (x 2 + 3 x + 3) = 0 .

Проверка оставшихся делителей смысла не имеет, поскольку равенство x 2 + 3 x + 3 = 0 быстрее и удобнее решить с помощью дискриминанта.

Решим квадратное уравнение:

x 2 + 3 x + 3 = 0 D = 3 2 - 4 · 1 · 3 = - 3 < 0

Получаем комплексно сопряженную пару корней: x = - 3 2 ± i 3 2 .

Ответ : x = - 3 2 ± i 3 2 .

Пример 3

Условие: найдите для уравнения x 4 + 1 2 x 3 - 5 2 x - 3 = 0 действительные корни.

Решение

x 4 + 1 2 x 3 - 5 2 x - 3 = 0 2 x 4 + x 3 - 5 x - 6 = 0

Выполняем домножение 2 3 обеих частей уравнения:

2 x 4 + x 3 - 5 x - 6 = 0 2 4 · x 4 + 2 3 x 3 - 20 · 2 · x - 48 = 0

Заменяем переменные y = 2 x:

2 4 · x 4 + 2 3 x 3 - 20 · 2 · x - 48 = 0 y 4 + y 3 - 20 y - 48 = 0

В итоге у нас получилось стандартное уравнение 4 -й степени, которое можно решить по стандартной схеме. Проверим делители, разделим и получим в итоге, что оно имеет 2 действительных корня y = - 2 , y = 3 и два комплексных. Решение целиком здесь мы не будем приводить. В силу замены действительными корнями данного уравнения будут x = y 2 = - 2 2 = - 1 и x = y 2 = 3 2 .

Ответ: x 1 = - 1 , x 2 = 3 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике довольно часто встречаются уравнения высших степеней с целыми коэффициентами. Чтобы решить данного рода уравнения необходимо:

Определить рациональные корни уравнения;

Разложить на множители многочлен, который находится в левой части уравнения;

Найти корни уравнения.

Допустим, нам дано уравнение следующего вида:

Найдем все действительные его корни. Умножим левую и правую части уравнения на \

Выполним замену переменных \

Таким образом, у нас получилось приведенное уравнение четвертой степени, которое решается по стандартному алгоритму: проверяем делители, проводим деление и в результате выясняем, что уравнение имеет два действительных корня \ и два комплексных. Получим следующий ответ нашего уравнения четвертой степени:

Где можно решить уравнение высших степеней онлайн решателем?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.