Метеорология. Метеорология Высотные синоптические карты

Метеорология - наука, изучающая явления, происходящие в земной атмосфере, как-то: давление, температуру, влажность воздуха, облачность, осадки, дождь, снег и т. д. В отличие от ближайшей к ней науки - физики, науки опытной, - метеорология наука наблюдательная.

Явления, происходящие в земной атмосфере, до крайности сложны и находятся во взаимной зависимости одни от других, и обобщения возможны лишь при наличности обширного, возможно точного материала, добытого наблюдениями (см. Метеорологические наблюдения).

Так как воздух теплопрозрачен, т. е. пропускает значительное количество тепла, лишь мало нагреваясь от солнечных лучей, то значительное количество солнечного тепла доходит до поверхности суши и вод земного шара. Так как притом и суша, и вода имеют гораздо большую теплоемкость, чем воздух (при одинаковом объеме первая более 1500 раз, вторая более 3000 раз), то понятно, какое влияние на температуру нижнего слоя воздуха оказывают температура поверхности суши и вод земного шара, а нижние слои воздуха всего более исследованы.

Поэтому исследование верхних слоев суши и вод, особенно их температуры, входит в область метеорологии. По мере накопления материала и его научной разработки, М. стала разбиваться на части или отделы.

В конце XIX века в метеорологии решительно господствовал метод средних величин (см. Метеорологические наблюдения), в настоящее время он имеет особое значение для климатологии (см. Климаты), т. е. части метеорологии, но и здесь все более и более обращают внимание на разности и колебания метеорологических элементов, изображая их не только цифрами, но и более наглядно, на графических таблицах и картах.

Чем меньше колебания, тем более постоянен климат и тем большее значение приобретают средние величины. Если же колебания очень велики и часты, то средние величины гораздо меньше характеризуют климаты, чем там, где колебания меньше.

Современная метеорология обращает большое внимание и на крайние величины разных метеорологических элементов, изучение их имеет значение как для чистой науки, так и в применении к практике, например для сельского хозяйства.

Все метеорологические явления прямо или косвенно зависят от влияния солнечного тепла и света на Землю; ввиду этого особенное значение имеют два периода: суточный , зависящий от обращения Земли вокруг своей оси, и годовой , зависящий от обращения Земли вокруг Солнца. Чем ниже широта, тем больше относительное значение суточного периода, в особенности температуры (но и других явлений), и тем меньше значение годового.

На экваторе длина дня одинакова в течение года, т. е. 12 часов 7 минут, и угол падения солнечных лучей в полдень изменяется лишь в границах от 66 ° 32" до 90°, поэтому на экваторе в течение целого года около полудня получается очень много тепла от солнца, а в течение длинной ночи много и теряется лучеиспусканием, отсюда условия благоприятны для большой суточной амплитуды температуры поверхности почвы и нижнего слоя воздуха, т. е. большой разности между суточной температурой наименьшей и наибольшей.

Напротив, температуры суток в разное время года должны разниться очень мало. На полюсах суточный период совершенно исчезает, солнце восходит в день весеннего равноденствия и затем остается над горизонтом до дня осеннего равноденствия, причем более 2-х месяцев постоянно его лучи падают под углом более 20°, а около полугодия солнца совсем не видно. Очевидно, что эти условия должны способствовать очень большой годовой амплитуде температуры на полюсах , резко отличающейся от малой амплитуды, наблюдаемой в тропиках.

Суточный и годовой периоды метеорологических явлений - периоды бесспорные, но рядом с ними метеорологи искали и ищут других периодов, частью более коротких, чем годовой, частью более длинных. Из первых обратил на себя особое внимание 26-дневный период обращения Солнца вокруг своей оси, соответствующий, по мнению иных метеорологов, такому же периоду частоты гроз. Из более длинных периодов особенно много вычислений сделано для выяснения вопроса, влияет ли на земную атмосферу большее или меньшее количество солнечных пятен. Период их приблизительно 11-летний, т. е. через такой промежуток повторяются периоды особенно большого и особенно малого количества пятен.

В последние годы много писали о 35-летнем периоде, в течение которого чередуются будто бы холодные и влажные годы с теплыми и сухими, но такой период не совпадает с какими-либо известными явлениями на Солнце. Исследования этого рода дали далеко не согласные между собой результаты, и поэтому влияние на нашу атмосферу каких-либо периодов, кроме суточного и годового, можно считать сомнительным.

В последние 30 лет метеорология все менее и менее довольствуется средними величинами и вообще эмпирическими исследованиями и все более старается проникнуть в сущность явлений, применяя к ним законы физики (особенно учения о теплоте) и механики. Так, все современное учение об изменениях температуры в восходящих и нисходящих движениях воздуха основано на применении законов термодинамики, причем оказалось, что, несмотря на чрезвычайную сложность явлений, в некоторых случаях получаются результаты, очень сходные с теоретическими. Особенно велики в этом вопросе заслуги Ганна (Hann, см.).

Все современное учение о движении воздуха основано на применении учений механики, причем метеорологам пришлось самостоятельно разработать законы механики в применении к условиям земного шара. Всего более в этой области сделал Феррель (см.).

Точно так же и в вопросах о лучеиспускании солнца, земли и воздуха, особенно в первом, сделано в последние годы очень много, и если наиболее важные работы сделаны физиками и астрофизиками (упомянем особенно о Ланглее, см.), то эти ученые были знакомы с современными требованиями метеорологии, весьма ясно выраженными и многими метеорологами, а последние, помимо того, старались возможно быстро воспользоваться достигнутыми результатами, вырабатывая при этом простые способы наблюдения, доступные большому кругу лиц, так что теперь актинометрия все более становится необходимой частью метеорологии.

Выше было упомянуто о том, что метеорология до сих пор изучала главным образом нижние слои воздуха оттого, что явления здесь легче доступны для изучения и притом имеют большую важность для практической жизни. Но метеорологи уже давно стремятся исследовать слои воздуха, отдаленные от массы земной поверхности.

На высоких отдаленных горах воздух соприкасается с весьма малой частью земной поверхности, и притом он находится обыкновенно в таком быстром движении, что цель до некоторой степени достигается устройством горных метеорологических обсерваторий. Они существуют в нескольких странах Европы и Америки (впереди других стран в этом деле стоит Франция) и несомненно оказали и еще окажут большие услуги метеорологии.

Вскоре по изобретении воздушных шаров ученые задались целью посредством них исследовать слои воздуха, очень удаленные от земной поверхности и очень разреженные, и уже в начале XIX столетия Гей-Люссак предпринимал полеты с научной целью. Но долгое время недостатки техники воздухоплавания и недостаточная чувствительность метеорологических инструментов мешали успехам дела, и лишь с 1893 г., почти одновременно во Франции и Германии, были пущены на огромную высоту (до 18000 м) шары без людей, с самопишущими инструментами.

В России это дело также сделало большие успехи, и теперь во Франции, Германии и России предпринимаются одновременные полеты, очень важные в данном деле. Долгое время, после того как метеорология стала наукой, как начались правильные наблюдения и обобщения, связь между наукой и практикой долго была крайне слаба или даже совсем не существовала.

В последние 35 лет это существенно изменилось, и синоптическая или практическая метеорология получила большое развитие. Она имеет целью не только изучение явлений погоды, но и предвидение или предсказание погоды (см.). Дело началось с более простых явлений, то есть предсказания бурь , для целей мореплавания, в чем уже достигнуты значительные успехи.

В настоящее время метеорология стремится к тому же в интересах сельского хозяйства, но эта задача несомненно сложнее, как по характеру явлений, предсказание которых особенно желательно, то есть осадков (см.), так и по разбросанности хозяйств, трудности предупредить их о вероятном наступлении той или другой погоды.

Впрочем, задачи сельскохозяйственной метеорологии далеко не исчерпываются предсказанием погоды в интересах сельского хозяйства; подробное климатологическое изучение всех метеорологических элементов, важных для сельского хозяйства, стоит на первом плане. Сельскохозяйственная метеорология только что возникает и получила особенное значение в двух обширных земледельческих государствах, России и Соединенных Штатах.

Выше было указано на различия методов двух наук, столь близких между собой, как физика и метеорология. По преобладанию наблюдения метеорология сближается с астрономией. Но тем не менее различие очень велико не только в объекте исследования, но и в другом. Все наблюдения, необходимые для астрономии, могут быть сделаны в нескольких десятках пунктов, целесообразно расположенных на земном шаре; эти наблюдения требуют только людей с большими знаниями и вполне овладевших довольно сложной техникой дела.

Иное дело метеорология. Несколько десятков обсерваторий, расположенных самым целесообразным образом по земному шару, с наилучшими наблюдателями и инструментами, все-таки будут далеко недостаточны для изучения очень многих метеорологических явлений. Последние так сложны, так изменчивы в пространстве и во времени, что непременно требуют очень большого количества пунктов наблюдений.

Так как было бы немыслимо снабдить десятки и сотни тысяч станций сложными и дорогими инструментами, и еще менее возможно приискать такое число наблюдателей, стоящих на высоте науки и техники, то метеорологии приходится довольствоваться и менее совершенными наблюдениями, и прибегать к содействию широкого круга лиц, не получивших специального образования, но интересующихся явлениями климата и погоды, и выработать для них возможно простые и дешевые инструменты и способы наблюдений. Во многих случаях даже наблюдения ведутся без инструментов. Поэтому ни одна наука так не нуждается в талантливых популярных книгах и статьях, как метеорология.

В настоящее время не имеется полного курса метеорологии, соответствующего современному состоянию науки; единственные два полных курса Kämtz, "Lehrbuch der Meteo" (1833) и Schmid, "Lehrbuch der Meteo" (1860) уже значительно устарели во многих частях.

Из менее полных руководств, обнимающих все части науки, укажем на von Bebber, "Lehrbuch der Meteo"; Лачинов, "Основы метеорологии". Гораздо короче и популярнее известный курс Mohn, "Grundzü ge der Meteo"; здесь главное внимание обращено на явления погоды, имеется русский перевод с 1-го немецкого издания: "Метеорология, или Наука о погоде". Совершенно самостоятельная книга о погоде: Abercromby, "Weather" (есть немецкий перевод); систематическое руководство по учению о погоде: von Bebber, "Handbuch der aus ü benden Witterungskunde".

Книга Поморцева, "Синоптическая метеорология", по своему характеру стоит посередине вышеупомянутых.

По динамической метеорологиb: Sprung, "Lehrbuch der Мeteo".

По климатологии: Hann, "Handbuch der Klimatologie"; Воейков, "Климаты земного шара".

По сельскохозяйственной метеорологии: Houdaille, "Meteorologie agricole"; по лесной метеорологии: Hornberger, "Grundriss der Meteo". Совершенно популярные, очень краткие курсы "Houzeau et Lancaster Meteorologie"; Skott, "Elementary Мeteo".

Сборники наблюдений и периодические издания - см. Метеорологические издания.

При написании этого текста использовался материал из
Энциклопедического словаря Брокгауза Ф.А. и Ефрона И.А. (1890-1907).

Английский
метеорология – meteorology

Это наука об атмосфере, изучающая ее состав, свойства и протекающие в ней физические и химические процессы. Метеорологию кратко и емко называют физикой атмосферы. Метеорология составляет часть более общей науки - геофизики, которая изучает явления и процессы, происходящие в атмосфере, на поверхности суши и в толще почвогрунтов (рисунок 1).

Рисунок 1. Структурная схема науки – геофизики.

Основные задачи метеорологии:

  • изучение всех физических и химических процессов и явлений, происходящих в атмосфере;
  • изучение закономерностей, по которым эти процессы и явления происходят;
  • прогнозирование наступления и развития атмосферных процессов и явлений;
  • организация системы наблюдений за атмосферными явлениями и процессами;
  • разработка методов управления процессами, происходящими в атмосфере;
  • использование результатов метеорологической информации в отраслях народного хозяйства: прежде всего в авиации, для морского, железнодорожного и автомобильного транспорта, при проектировании и строительстве различных ответственных сооружений (линий электропередачи, зданий, водохранилищ, газопроводов и электростанций).

В прямой и непосредственной зависимости от метеорологической информации находится сельскохозяйственное производство.

Решение проблем по экологии и охране окружающей среды также связаны с метеорологическими наблюдениями за процессами загрязнения атмосферы и водных объектов.

Перечисленные основные задачи метеорологии базируютсяна решении следующих конкретных, отдельных задач или подзадач:

  • изучение основных характеристик атмосферы: состава, вертикального расслоения, горизонтальной неоднородности, атмосферного давления и др.;
  • изучение солнечной, земной и атмосферной радиации: потоки солнечной энергии в атмосфере, спектр солнечной радиации, приход и расход солнечной энергии;
  • тепловой режим почвы и водоемов: нагревание и охлаждение почвы, суточный и годовой ход температуры поверхности почвы, изменение температуры почвы с глубиной, температурный режим водоемов;
  • тепловой режим атмосферы: нагревание и охлаждение воздуха, суточные и годовые колебания температуры, влияние растительного покрова, географическое распределение температуры приземного слоя атмосферы, изменение температуры по высоте, адиабатические процессы в атмосфере;
  • водяной пар в атмосфере: испарение, влажность, конденсация водяного пара, образование различных видов и разновидностей облаков;
  • образование атмосферных осадков: разновидность осадков и их характеристики, распределение осадков по земной поверхности;
  • воздушные течения в атмосфере: изменение скорости и направления ветра, влияние препятствий на ветер, изменение скорости и направления ветра по высоте;
  • оптические явления и электрические процессы в атмосфере: рассеяние и поглощение света, дальность видимости, преломление и отражение света в атмосфере, электрическое поле и электрическая проводимость атмосферы, грозовое электричество;
  • звуковые явления в атмосфере: скорость звука, преломление и отражение звука, ослабление звука в атмосфере.

Поскольку метеорология решает очень большой круг задач, то она подразделяется на несколько отдельных направлений .

Синоптическая метеорология - направление метеорологии, которое изучает закономерности развития атмосферных процессов, определяющих условия погоды, и разрабатываются методы ее прогноза.

Погодой называется состояние атмосферы и совокупность наблюдаемых в ней в данный момент явлений.

Климатология - направление метеорологии, которое изучает условия и закономерности формирования климата, распределение по земному шару и изменение климата во времени.

Климатом данной местности называется режим погоды, характерный для этой местности в многолетнем разрезе и обусловленный солнечной радиацией, характером подстилающей поверхности (поверхность, на которую направлена солнечная радиация) и циркуляцией атмосферы.

Неоднородность подстилающей поверхности определяет различный климат. Изучением особенностей климата, связанных с неоднородностью подстилающей поверхности, занимается микроклиматология .

Актинометрия - направление метеорологии, которое изучает солнечное, земное и атмосферное излучение в условиях атмосферы.

Физика атмосферы - направление метеорологии, которое изучает физические закономерности процессов и явлений, происходящих в приземном, то есть нижних слоях атмосферы, в свободной атмосфере (аэрология) и в верхних слоях атмосферы.

Иногда актинометрию относят к физике атмосферы. Физика атмосферы подразделяется на атмосферную оптику, атмосферное электричество и атмосферную акустику .

Динамическая метеорология - направление метеорологии, которое изучает динамику атмосферы (движение) и связанные с ней преобразования энергии на основе законов гидромеханики и термодинамики.

Одной из важных задач этого направления является разработка математических моделей атмосферных процессов для составления прогнозов погоды, исследования экологии окружающей среды, изменений климатических явлений.

Прикладная метеорология - направление метеорологии, которое изучает влияние различных метеорологических процессов на функционирование различных отраслей народного хозяйства.

Различают сельскохозяйственную метеорологию (агрометеорология), медицинскую метеорологию (биометеорология), авиационную метеорологию и др.

Метеороло́гия (от греч. μετέωρος, metéōros, атмосферные и небесные явления и -λογία, -логия) - наука о строении и свойствах земной атмосферы и совершающихся в ней физических процессах. Во многих странах метеорологию называют физикой атмосферы, что в большей степени соответствует её сегодняшнему значению.

Основные объекты исследования

  • физические, химические процессы в атмосфере
  • состав атмосферы
  • строение атмосферы
  • тепловой режим атмосферы
  • влагообмен в атмосфере
  • общая циркуляция атмосферы
  • электрические поля
  • оптические и акустические явления
  • циклоны
  • антициклоны
  • ветра
  • фронты
  • климат
  • погода
  • облака

История науки

Первые исследования в области Метеорологии относятся к античному времени (Аристотель). Развитие Метеорологии ускорилось с 1-й половины 17 в., когда итальянские учёные Г. Галилей и Э. Торричелли разработали первые метеорологические приборы - барометр и термометр.

В 17-18 вв. были сделаны первые шаги в изучении закономерностей атмосферных процессов. Из работ этого времени следует выделить метеорологические исследования М. В. Ломоносова и Б. Франклина, которые уделяли особое внимание изучению атмосферного электричества. В этот же период были изобретены и усовершенствованы приборы для измерения скорости ветра, количества выпадающих осадков, влажности воздуха и др. метеорологических величин. Это позволило начать систематические наблюдения за состоянием атмосферы при помощи приборов, сначала в отдельных пунктах, а в дальнейшем (с конца 18 в.) на сети метеорологических станций. Мировая сеть метеорологических станций, проводящих наземные наблюдения на основной части поверхности материков, сложилась в середине 19 в.

Наблюдения за состоянием атмосферы на различных высотах были начаты в горах, а вскоре после изобретения аэростата (конец 18 в.) - в свободной атмосфере. С конца 19 в. для наблюдения за метеорологическими величинами на различных высотах широко используются шары-пилоты и шары-зонды с самопишущими приборами. В 1930 советский учёный П. А. Молчанов изобрёл радиозонд - прибор, передающий сведения о состоянии свободной атмосферы по радио. В дальнейшем наблюдения при помощи радиозондов стали основным методом исследования атмосферы на сети аэрологических станций. В середине 20 в. сложилась мировая актинометрическая сеть, на станциях которой производятся наблюдения за солнечной радиацией и её преобразованиями на земной поверхности; были разработаны методы наблюдений за содержанием озона в атмосфере, за элементами атмосферного электричества, за химическим составом атмосферного воздуха и др. Параллельно с расширением метеорологических наблюдений развивалась климатология, основанная на статистическом обобщении материалов наблюдений. Большой вклад в построение основ климатологии внёс А. И. Воейков, изучавший ряд атмосферных явлений: общую циркуляцию атмосферы, влагооборот, снежный покров и др.

В 19 в. получили развитие эмпирические исследования атмосферной циркуляции с целью обоснования методов прогнозов погоды. Работы У. Ферреля в США и Г. Гельмгольца в Германии положили начало исследованиям в области динамики атмосферных движений, которые были продолжены в начале 20 в. норвежским учёным В. Бьеркнесом и его учениками. Дальнейший прогресс динамической Метеорологии ознаменовался созданием первого метода численного гидродинамического прогноза погоды, разработанного советским учёным И. А. Кибелем, и последующим быстрым развитием этого метода.

В середине 20 в. большое развитие получили методы динамической Метеорологии в изучении общей циркуляции атмосферы. С их помощью американские метеорологи Дж. Смагоринский и С. Манабе построили мировые карты температуры воздуха, осадков и др. метеорологических величин. Аналогичные исследования ведутся во многих странах, они тесно связаны с Международной программой исследования глобальных атмосферных процессов (ПИГАП). Значительное внимание в современной Метеорологии уделяется изучению физических процессов в приземном слое воздуха. В 20-30-х гг. эти исследования были начаты Р. Гейгером (Германия) и др. учёными с целью изучения микроклимата; в дальнейшем они привели к созданию нового раздела Метеорологии - физики пограничного слоя воздуха. Большое место занимают исследования изменений климата, в особенности изучение всё более заметного влияния деятельности человека на климат.

Метеорология в России достигла высокого уровня уже в 19 в. В 1849 в Петербурге была основана Главная физическая (ныне геофизическая) обсерватория - одно из первых в мире научных метеорологических учреждений. Г. И. Вильд, руководивший обсерваторией на протяжении многих лет во 2-й половине 19 в., создал в России образцовую систему метеорологических наблюдений и службу погоды. Он был одним из основателей Международной метеорологической организации (1871) и председателем международной комиссии по проведению 1-го Международного полярного года (1882-83). За годы Советской власти был создан ряд новых научных метеорологических учреждений, к числу которых относятся Гидрометцентр СССР (ранее Центральный институт прогнозов), Центральная аэрологическая обсерватория, институт физики атмосферы АН СССР и др.

Основоположником современной школы динамической Метерологии был А. А. Фридман. В его исследованиях, а также в более поздних работах Н. Е. Кочина, П. Я. Кочиной, Е. Н. Блиновой, Г. И. Марчука, А. М. Обухова, А. С. Монина, М. И. Юдина и др. были исследованы закономерности атмосферных движений различных масштабов, предложены первые модели теории климата, разработана теория атмосферной турбулентности. Закономерностям радиационных процессов в атмосфере были посвящены работы К. Я. Кондратьева.

В работах А. А. Каминского, Е. С. Рубинштейн, Б. П. Алисова, О. А. Дроздова и др. советских климатологов был детально изучен климат нашей страны и исследованы атмосферные процессы, определяющие климатические условия. В исследованиях, выполненных в Главной геофизической обсерватории, изучался тепловой баланс земного шара и были подготовлены атласы, содержащие мировые карты составляющих баланса. Работы в области синоптической Метеорологии (В. А. Бугаев, С. П. Хромов, А.С.Зверев и др.) способствовали значительному повышению уровня успешности метеорологических прогнозов. В исследованиях агрометеорологов (Г. Т. Селянинов, Ф. Ф. Давитая и др.) дано обоснование оптимального размещения с.-х. культур на территории нашей страны.

Существенные результаты получены в Советском Союзе в работах по активным воздействиям на атмосферные процессы. Опыты воздействий на облака и осадки, начатые В. Н. Оболенским, получили широкое развитие в послевоенные годы. В результате исследований, проведённых под руководством Е. К. Фёдорова, была создана первая система, позволяющая ослаблять градобитие на большой территории.

Метеорология сегодня

Характерной чертой современной Метеорологии является применение в ней новейших достижений физики и техники. Так, для наблюдений за состоянием атмосферы используются метеорологические спутники, позволяющие получать информацию о многих метеорологических величинах для всего земного шара. Для наземных наблюдений за облаками и осадками пользуются радиолокационными методами. Всё возрастающее применение находит автоматизация метеорологических наблюдений и обработки их данных. В исследованиях по теоретической Метеорологии широко используются ЭВМ, применение которых имело громадное значение для разработки и усовершенствования численных методов прогнозов погоды. Расширяется использование количественных физических методов исследования в таких областях Метеорологии, как климатология, агрометеорология, биометеорология человека, где ранее они почти не применялись.

Наиболее тесно Метеорология связана с океанологией и гидрологией суши. Эти три науки изучают различные звенья одних и тех же процессов теплообмена и влагообмена, развивающихся в географической оболочке Земли. Связь Метеорологии с геологией и геохимией основана на общих задачах этих наук в исследованиях эволюции атмосферы и изменений климатов Земли в геологическом прошлом. В современной Метеорологии широко используются методы теоретической механики, а также материалы и методы многих др. физических, химических и технических дисциплин.

Одна из главных задач Метеорологии - прогноз погоды на различные сроки. Краткосрочные прогнозы особенно необходимы для обеспечения работы авиации; долгосрочные - имеют большое значение для сельского хозяйства. Т. к. метеорологические факторы оказывают существенное влияние на многие стороны хозяйственной деятельности, для обеспечения запросов народного хозяйства необходимы материалы о климатическом режиме. Быстро возрастает практическое значение активных воздействий на атмосферные процессы, в том числе воздействий на облачность и осадки, защиты растений от заморозков и др.

Научными и практическими работами в области Метеорологии руководит Гидрометеорологическая служба СССР, созданная в 1929.

Деятельность метеорологических служб различных стран объединяет Всемирная метеорологическая организация и др. международные метеорологические организации. Международные научные совещания по различным проблемам Метеорологии проводит также Ассоциация метеорологии и физики атмосферы, входящая в состав Геодезического и геофизического союза. Наиболее крупными совещаниями по Метеорологии в РФ являлись Всесоюзные метеорологические съезды. Метеорологические съезды проводятся в России с 1900 года. Последний по времени проведения съезд проводился в СССР в 1971 году. 6-й Всероссийский метеорологический съезд призван стать самым масштабным в новой российской истории событием в области гидрометеорологии и мониторинга окружающей среды, и он состоялся 14-16 октября 2009 г. Россия, Санкт-Петербург.

Работы, выполняемые в области Метеорологии, публикуются в метеорологических журналах.

Наиболее важные исторические даты:

  • конец XVII в. (при Петре I) - начались постоянные наблюдения за погодой.
  • 1715 г. - первый в России водомерный пост, по приказу Петра I на Неве у Петропавловской крепости.
  • 10 апреля 1722 по указу Петра Великого в Санкт-Петербурге начались систематические наблюдения за погодой. Записи вёл вице-адмирал Корнелиус Крюйс. Первое время записи были довольно скупы на интересную информацию и выглядели примерно так: «Апрель, 22, воскресенье. Поутру ветер норд-вест; вода також стоит, как выше упомянуто. Пасмурно и студено… в полдни ветр малый норд-вест и дождь после полудня. Тихо и красный день до самого вечера». Позднее наблюдения приняли более научный характер.
  • В 1724 году была образована первая в России метеорологическая станция, а с декабря 1725 года при Академии наук стали проводиться наблюдения при помощи барометра и термометра.
  • 30-е годы XVIII в. - создана сеть из 20 метеостанций («Великая северная экспедиция»).
  • 1 апреля 1849 г. - в Петербурге учреждена «Главная физическая обсерватория» (ГФО). (Ныне «Главная геофизическая обсерватория» им. А. И. Воейкова (ГГО)).
  • 70-е годы XIX в. - массовое развитие сети пунктов гидрологических наблюдений на крупных реках и озёрах.
  • 1 января 1872 г. - ГФО приступила к созданию ежедневных синоптических карт Европы и Сибири и к выпуску метеорологического бюллетеня (дату принято считать днём рождения службы погоды в России).
  • 1892 г. - начал выходить «Метеорологический ежемесячник».
  • 21 июня 1921 г. - В. И. Ленин подписал декрет «Об организации метеорологической службы в РСФСР».
  • Август 1929 г. - постановление СНК СССР об организации единой Гидрометеорологической службы. Создатель и руководитель - А. Ф. Вангенгейм, председатель Гидрометеорологического комитета при СНК СССР.
  • 1 января 1930 г. - начало работу «Центральное бюро погоды».

Где работают метеорологи

  • Органы Федеральной службы России по гидрометеорологии и мониторингу окружающей среды (отделы прогноза погоды, климатологии, сельскохозяйственной метеорологии).
  • Прогностические подразделениях гражданской и военной авиации.
  • Региональные центры сбора, контроля и анализа информации о состоянии воздушной среды.
  • Сеть метеорологических, аэрологических и актинометрических станций.
  • Научно-исследовательские учреждения, изучающие закономерности климата и разрабатывающие прогнозы климатических изменений.

Чем занимаются метеорологи

Значительная часть метеорологов занимается прогнозом погоды. Они работают в правительственных и военных организациях и частных компаниях, обеспечивающих прогнозами авиацию, мореплавание, сельское хозяйство, строительство, а также передают их по радио и телевидению.

Другие специалисты проводят наблюдения за уровнем загрязнения, оказывают консультации, преподают или занимаются научно-исследовательской работой. При метеорологических наблюдениях, прогнозе погоды и научных изысканиях все бóльшее значение приобретает электронное оборудование.

Профессиональная практическая деятельность заключается в:

  • научно-исследовательской: участие в разработке физико-математических моделей общей циркуляции атмосферы и климата, включая взаимодействие атмосферы и океана, в их сопоставлении с наблюдениями, анализе чувствительности к различным природным факторам; изучению физических и химических процессов, протекающих в атмосфере и при ее взаимодействии с земной поверхностью и биосферой; осуществление географического и физического анализа атмосферных процессов и явлений, их классификации, установлению эмпирических зависимостей и закономерностей; исследование переноса, трансформации и выведению промышленных и других загрязнений, выбрасываемых в атмосферу;
  • оперативно-производственной: оценка влияния метеорологических факторов на состояние окружающей среды и разработка рекомендаций по их рациональному учету целях охраны природы; метеорологическому обоснованию проектируемых сооружений аэропортов, размещения строительства и др.; участие в экологической экспертизе проектов;
  • проектно-производственной: организация и проведение специальных метеорологических наблюдений; проведение оперативных прогнозов погоды различной заблаговременности и сбору необходимой информации; оценка влияния сложившихся и ожидаемых метеорологических условий на сельское хозяйство, рыболовство и производственную деятельность всех видов транспорта;
  • педагогической (при условии освоения педагогической программы обучения): преподавание метеорологических дисциплин в вузах и средних специальных учебных заведениях; учебно-вспомогательная работа в вузах.

Метеоролог, освоивший основную образовательную программу высшего профессионального образования может продолжить свое образование в аспирантуре по специальностям «Метеорология, климатология и агрометеорология», «Геоэкология», и другим смежным специальностям, а также в магистратуре по направлению «Гидрометеорология».

Погода непрерывно меняется, ее изменения подчинены сложным законам, не до конца еще познанным людьми. Какой бы спокойной ни была она, в любой момент от нее, можно ждать неожиданностей. Метеорологу, особенно синоптику, никогда не приходится иметь дело с одной и той же ситуацией, с одной и той же погодой: разнообразие метеорологических условий в природе так велико, что двух одинаковых карт погоды еще никому не приходилось видеть. Анализ любой ситуации, отражаемой картой погоды любого дня,- всегда новая, не встречавшаяся ранее задача. Воистину с погодой не соскучишься!

Заслуживает быть отмеченной и еще одна привлекательная особенность работы метеоролога: у него есть коллеги практически в любой точке земного шара. Можно отметить удивительную легкость общения между никогда раньше не видевшими друг друга коллегами-метеорологами, где бы они не встречались - в таежной деревушке в Восточной Сибири или на перевалах Гиссарского хребта в Средней Азии, в заповеднике Западного Кавказа или в селениях Алазанской долины, в Грузии, в румынском порту Констанца, в болгарских городах в долине Дуная, в сербских и венгерских селениях, на американских научных станциях в Антарктике, в тропической Австралии в субтропической Новой Зеландии, в бразильских джунглях, аргентинской саванне, в Швейцарских Альпах и на Французской Юре...

Нельзя сбрасывать со счетов и сознание важности труда метеоролога, результаты которого нужны всем отраслям народного хозяйства. Постоянный интерес всеx слоев населения страны к метеорологической информации делает работу метеорологов интересной вдвойне.

Профессия метеоролога относится к числу относительно редких, не массовых и в какой-то мере романтических профессий: метеорологи - непременные участники самых различных экспедиций, они зимуют на полярных станциях, работают в малонаселенных районах, на высокогорных плато и перевалах, на борту океанических кораблей, на аэродромах, летают на самолетах и аэростатах и т. д., и т. п. Все это так, действительно метеорологи вездесущи, им приходится бывать в таких местах, куда люди других профессий не могут надеяться попасть ни при каких обстоятельствах. Но все же не это является главной отличительной чертой работы метеоролога, которая далеко не всегда так романтична, как это может показаться с первого взгляда, и практически всегда требует пунктуальности, упорства и настойчивости в выполнении будничных, повседневных обязанностей. Основное требование к работе метеоролога любой квалификации - объективность. Объективность при выполнении наблюдений, значительная часть которых производится визуально и результаты которых документируются только одним метеонаблюдателем и не могут быть ни проверены, ни исправлены, если будет допущена неточность или ошибка. Объективность при обработке результатов наблюдений, точность их записи цифрами международного кода, делающая их доступными всему миру. Объективность анализа всей суммы данных наблюдений, сведение к минимуму субъективности в их оценке - в этом залог успешности всех видов обеспечения потребителей метеорологической информацией, в том числе и успешности составляемых на основе этого анализа прогнозов погоды... Вторая особенность работы метеоролога - постоянное внимание к объекту наблюдений, изучения и анализа, невозможность отвлечься, хотя бы на время заняться другим делом. Метеоролог за работой - часовой погоды, он на вахте которую нельзя оставить ни на минуту. Он обязан следить за всеми изменениями погоды, сколь бы незначительными они ни были, фиксировать все эти изменения и Считывать. Метеоролог следит за небом постоянно, даже не находясь на работе. Где бы он ни находился и что бы ни стало он мысленно оценивает все происходящее в атмосфере на его глазах. Вместе с тем не существует профессии, в большей степени интернациональной, чем профессия метеоролога. Сама идея выполнения наблюдений за погодой, сбора, обработки и распространения метеорологической информации предусматривает международное сотрудничество, без которого она неосуществима. В самом деле: явления погоды развиваются над земной поверхностью, не считаясь с государственными границами; обмен метеорологической информацией необходим в масштабах всего земного шара, и он возможен только при наличии общедоступного всем метеоспециалистам международного языка, каким являются цифровые метеорологические коды и стандартные символы; результаты наблюдений за погодой и всех метеорологических измерений должны быть сравнимы и сопоставимы между собой, что требует единой для всего мира системы мер, единой методики производства наблюдений, стандартизации приборов, соблюдения точности и сроков измерений метеорологических величин. Метеорологи - люди со специальным образованием. Среди них есть метеонаблюдатели, операторы метеорологических радиолокаторов, техники, инженеры и научные работники. В метеорологической службе вместе с метеорологами работают люди и других специальностей - радиотехники, связисты, механики, телеметристы, электронщики, программисты и операторы ЭВМ и многие другие. Без их помощи нельзя себе представить работу метеорологов, стоящих сегодня на страже погоды.

Разделы метеорологии

Основной раздел Метеорологии - физика атмосферы, исследующая физические явления и процессы в атмосфере.

Химические процессы в атмосфере изучаются химией атмосферы - новым, быстро развивающимся разделом Метеорологии.

Изучение атмосферных процессов теоретическими методами гидроаэромеханики - задача динамической метеорологии, одной из важных проблем которой является разработка численных методов прогнозов погоды.

Другими разделами Метеорологии являются: наука о погоде и методах её предсказания - синоптическая метеорология и наука о климатах Земли - климатология, обособившаяся в самостоятельную дисциплину. В этих дисциплинах пользуются как физическими, так и географическими методами исследования, однако в последнее время физические направления в них стали ведущими. Влияние атмосферных факторов на биологические процессы изучается биометеорологией, включающей сельско-хозяйственную метеорологию и биометеорологию человека.

В состав физики атмосферы входят: физика приземного слоя воздуха, изучающая процессы в нижних слоях атмосферы; аэрология, посвященная процессам в свободной атмосфере, где влияние земной поверхности менее существенно; физика верхних слоев атмосферы, рассматривающая атмосферу на высотах в сотни км, где плотность атмосферных газов очень мала. Изучением физики и химии верхних слоев атмосферы занимается аэрономия. К физике атмосферы относятся также актинометрия, изучающая солнечную радиацию в атмосфере и её преобразования, атмосферная оптика - наука об оптических явлениях в атмосфере, атмосферное электричество и атмосферная акустика.

Специальность и профиль «Метеорология» в ИГУ

Сегодня уже никого не надо убеждать в том, что качественное высшее образование - залог успешного, обеспеченного будущего. Оно необходимо каждому человеку в современном мире, чтобы добиться успеха и реализовать себя. Иркутский Государственный Университет (ИГУ) дает возможность получить полноценное высшее образование гидрометеорологического профиля, соответствующее мировым нормам и стандартам.

Существует три основные специальности, по которым готовят кадры метеорологов: собственно метеорологическая, климатологическая и агрометеорологическая. Внутри метеорологической специальности есть несколько специализаций: синоптика, аэрология, морская метеорология авиационная метеорология, радиометеорология, метеорологическое приборостроение и предвычисление погоды (решение задач прогнозирования численными методами с помощью ЭВМ). Синоптики занимаются составлением прогнозов погоды, аэрологи - изучением состояния атмосферы на высотах, морские метеорологи - обеспечением метеорологической информацией морского транспорта, а авиационные метеорологи - воздушного транспорта. Радиометеорологи разрабатывают вопросы использования различных радиотехнических средств для исследования атмосферы. В последние годы наметилась тенденция к развитию еще одной специализации - спутниковой метеорологии, что диктуется непрерывно возрастающей потребностью использования информации метеорологических спутников для нужд народного хозяйства.

При подготовке специалистов-метеорологов на кафедре метеорологии и охраны атмосферы изучаются как самые передовые технологии анализа метеорологической информации, так и методики, проверенные временем. К первым можно отнести моделирование климатических процессов, предсказание погоды с использованием нейросетей, ко вторым - обычный статистический анализ, но уже с привлечением современного программного обеспечения и компьютерного оборудования.

На начальных стадиях студенты получают основные сведения из статистики и приобретают навыки работы на персональных компьютерах. Дальнейшее обучение строится на углублении полученных данных и обучению другим навыкам. Так, для статистического анализа численных рядов, каковыми являются ряды измерений метеорологических характеристик, используются пакеты фирмы StatSoft STATISTICA и фирмы Goldern SoftWare Grapher. Первый обладает возможностями для наиболее полного анализа числовых рядов с применением большинства известных статистических подходов, а второй - представляет эти ряды в виде графика так, что становятся ясными тенденции поведения той или иной метеорологической характеристики.

На старших курсах студентов обучают технологиям, внедряемым в современные службы погоды. К таким относятся, в первую очередь, геоинформационные системы (ГИС). На основе данных, получаемых дважды в сутки из Мировых центров данных в Москве и Вашингтоне, студенты строят и обрабатывают метеорологические карты. На этих картах проводятся изотермы, изобары, атмосферные фронты. Строятся прогностические карты различной заблаговременности и многое другое.

Перспективные направления – палеоклиматология (древние климаты Земли), биометеорология (воздействие климатических условий на живые организмы, циклы солнечной активности Чижевского), медицинская климатология (жизнь и хозяйственная деятельность людей в разных климатических поясах Земли), прогноз погоды на основе спутниковой метеорологии, военная метеорология (разработка так называемого климатического оружия), планетарная метеорология (изучение атмосфер Венеры, Марса, Юпитера, Сатурна и их спутников), проблемы глобального потепления и озоновых дыр на Земле, компьютерное моделирование метеорологических и климатических процессов.

Специалистам нужно хорошо знать физику, математику и информатику, поэтому на кафедре метеорологии и охране атмосферы физике и математике уделяют внимание не меньшее, нежели собственно географии!

Словарь Ефремовой

Метеорология

ж.
Научная дисциплина, изучающая земную атмосферу и происходящие в ней процессы.

Словарь Ушакова

Военно-морской Словарь

Метеорология

наука, изучающая состав и строение атмосферы, а также явления, происходящие в ней (тепловые режимы, движения воздуха, акустические и электрические). Военная метеорология изучает влияние метеорологических условий на действия войск (ВМС), на применение оружия и военной техники.

Словарь Ожегова

МЕТЕОРОЛО ГИЯ, и, ж. Наука о физическом состоянии земной атмосферы и о происходящих в ней процессах. Синоптическая м. (изучение атмосферных процессов в связи с прогнозированием погоды).

| прил. метеорологический, ая, ое.

Энциклопедический словарь

Метеорология

(от греч. meteora - атмосферные явления и...логия), наука о земной атмосфере и происходящих в ней процессах. Основной раздел метеорологии - физика атмосферы. Метеорология изучает состав и строение атмосферы; теплооборот и тепловой режим в атмосфере и на земной поверхности; влагооборот и фазовые превращения воды в атмосфере, движения воздушных масс; электрические, оптические и акустические явления в атмосфере. К метеорологии относятся актинометрия, динамическая и синоптическая метеорология, атмосферная оптика, атмосферное электричество, аэрология, а также др. прикладные метеорологические дисциплины.

Энциклопедия Брокгауза и Ефрона

Метеорология

Наука, изучающая явления, происходящие в земной атмосфере, как-то: давление, температуру, влажность воздуха, облачность, осадки, дождь, снег и т. д. В отличие от ближайшей к ней науки - физики, науки опытной, - М. наука наблюдательная. Явления, происходящие в земной атмосфере, до крайности сложны и находятся во взаимной зависимости одни от других, и обобщения возможны лишь при наличности обширного, возможно точного материала, добытого наблюдениями (см. Метеорологические наблюдения). Так как воздух теплопрозрачен, т. е. пропускает значительное количество тепла, лишь мало нагреваясь от солнечных лучей, то значительное количество солнечного тепла доходит до поверхности суши и вод земного шара. Так как притом и суша, и вода имеют гораздо большую теплоемкость, чем воздух (при одинаковом объеме первая более 1500 раз, вторая более 3000 раз), то понятно, какое влияние на температуру нижнего слоя воздуха оказывают температура поверхности суши и вод земного шара, а нижние слои воздуха всего более исследованы. Поэтому исследование верхних слоев суши и вод, особенно их температуры, входит в область М. По мере накопления материала и его научной разработки, М. стала разбиваться на части или отделы. Еще сравнительно недавно в М. решительно господствовал метод средних величин (см. Метеорологические наблюдения), в настоящее время он имеет особое значение для климатологии (см. Климаты), т. е. части М., но и здесь все более и более обращают внимание на разности и колебания метеорологических элементов, изображая их не только цифрами, но и более наглядно, на графических таблицах и картах. Чем меньше колебания, тем более постоянен климат и тем большее значение приобретают средние величины. Если же колебания очень велики и часты, то средние величины гораздо меньше характеризуют климаты, чем там, где колебания меньше. Современная М. обращает большое внимание и на крайние величины разных метеорологических элементов, изучение их имеет значение как для чистой науки, так и в применении к практике, например для сельского хозяйства. Все метеорологические явления прямо или косвенно зависят от влияния солнечного тепла и света на Землю; ввиду этого особенное значение имеют два периода: суточный , зависящий от обращения Земли вокруг своей оси, и годовой , зависящий от обращения Земли вокруг Солнца. Чем ниже широта, тем больше относительное значение суточного периода, в особенности температуры (но и других явлений), и тем меньше значение годового. На экваторе длина дня одинакова в течение года, т. е. 12 часов 7 минут, и угол падения солнечных лучей в полдень изменяется лишь в границах от 66 ° 32" до 90°, поэтому на экваторе в течение целого года около полудня получается очень много тепла от солнца, а в течение длинной ночи много и теряется лучеиспусканием, отсюда условия благоприятны для большой суточной амплитуды температуры поверхности почвы и нижнего слоя воздуха, т. е. большой разности между суточной температурой наименьшей и наибольшей. Напротив, температуры суток в разное время года должны разниться очень мало. На полюсах суточный период совершенно исчезает, солнце восходит в день весеннего равноденствия и затем остается над горизонтом до дня осеннего равноденствия, причем более 2-х месяцев постоянно его лучи падают под углом более 20°, а около полугодия солнца совсем не видно. Очевидно, что эти условия должны способствовать очень большой годовой амплитуде температуры на полюсах , резко отличающейся от малой амплитуды, наблюдаемой в тропиках. Суточный и годовой периоды метеорологических явлений - периоды бесспорные, но рядом с ними метеорологи искали и ищут других периодов, частью более коротких, чем годовой, частью более длинных. Из первых обратил на себя особое внимание 26-дневный период обращения Солнца вокруг своей оси, соответствующий, по мнению иных метеорологов, такому же периоду частоты гроз. Из более длинных периодов особенно много вычислений сделано для выяснения вопроса, влияет ли на земную атмосферу большее или меньшее количество солнечных пятен. Период их приблизительно 11-летний, т. е. через такой промежуток повторяются периоды особенно большого и особенно малого количества пятен. В последние годы много писали о 35-летнем периоде, в течение которого чередуются будто бы холодные и влажные годы с теплыми и сухими, но такой период не совпадает с какими-либо известными явлениями на Солнце. Исследования этого рода дали далеко не согласные между собой результаты, и поэтому влияние на нашу атмосферу каких-либо периодов, кроме суточного и годового, можно считать сомнительным.

В последние 30 лет М. все менее и менее довольствуется средними величинами и вообще эмпирическими исследованиями и все более старается проникнуть в сущность явлений, применяя к ним законы физики (особенно учения о теплоте) и механики. Так, все современное учение об изменениях температуры в восходящих и нисходящих движениях воздуха основано на применении законов термодинамики, причем оказалось, что, несмотря на чрезвычайную сложность явлений, в некоторых случаях получаются результаты, очень сходные с теоретическими. Особенно велики в этом вопросе заслуги Ганна (Hann, см.). Все современное учение о движении воздуха основано на применении учений механики, причем метеорологам пришлось самостоятельно разработать законы механики в применении к условиям земного шара. Всего более в этой области сделал Феррель (см.). Точно так же и в вопросах о лучеиспускании солнца, земли и воздуха, особенно в первом, сделано в последние годы очень много, и если наиболее важные работы сделаны физиками и астрофизиками (упомянем особенно о Ланглее, см.), то эти ученые были знакомы с современными требованиями М., весьма ясно выраженными и многими метеорологами, а последние, помимо того, старались возможно быстро воспользоваться достигнутыми результатами, вырабатывая при этом простые способы наблюдения, доступные большому кругу лиц, так что теперь актинометрия все более становится необходимой частью М. Выше было упомянуто о том, что метеорология до сих пор изучала главным образом нижние слои воздуха оттого, что явления здесь легче доступны для изучения и притом имеют большую важность для практической жизни. Но метеорологи уже давно стремятся исследовать слои воздуха, отдаленные от массы земной поверхности. На высоких отдаленных горах воздух соприкасается с весьма малой частью земной поверхности, и притом он находится обыкновенно в таком быстром движении, что цель до некоторой степени достигается устройством горных метеорологических обсерваторий. Они существуют в нескольких странах Европы и Америки (впереди других стран в этом деле стоит Франция) и несомненно оказали и еще окажут большие услуги М. Вскоре по изобретении воздушных шаров ученые задались целью посредством них исследовать слои воздуха, очень удаленные от земной поверхности и очень разреженные, и уже в начале XIX столетия Гей-Люссак предпринимал полеты с научной целью. Но долгое время недостатки техники воздухоплавания и недостаточная чувствительность метеорологических инструментов мешали успехам дела, и лишь с 1893 г., почти одновременно во Франции и Германии, были пущены на огромную высоту (до 18000 м) шары без людей, с самопишущими инструментами. В России это дело также сделало большие успехи, и теперь во Франции, Германии и России предпринимаются одновременные полеты, очень важные в данном деле. Долгое время, после того как М. стала наукой, как начались правильные наблюдения и обобщения, связь между наукой и практикой долго была крайне слаба или даже совсем не существовала. В последние 35 лет это существенно изменилось, и синоптическая или практическая М. получила большое развитие. Она имеет целью не только изучение явлений погоды, но и предвидение или предсказание погоды (см.). Дело началось с более простых явлений, то есть предсказания бурь , для целей мореплавания, в чем уже достигнуты значительные успехи. В настоящее время М. стремится к тому же в интересах сельского хозяйства, но эта задача несомненно сложнее, как по характеру явлений, предсказание которых особенно желательно, то есть осадков (см.), так и по разбросанности хозяйств, трудности предупредить их о вероятном наступлении той или другой погоды. Впрочем, задачи сельскохозяйственной М. далеко не исчерпываются предсказанием погоды в интересах сельского хозяйства; подробное климатологическое изучение всех М. элементов, важных для сельского хозяйства, стоит на первом плане. Сельскохозяйственная М. только что возникает и получила особенное значение в двух обширных земледельческих государствах, России и Соединенных Штатах. Выше было указано на различия методов двух наук, столь близких между собой, как физика и М. По преобладанию наблюдения М. сближается с астрономией. Но тем не менее различие очень велико не только в объекте исследования, но и в другом. Все наблюдения, необходимые для астрономии, могут быть сделаны в нескольких десятках пунктов, целесообразно расположенных на земном шаре; эти наблюдения требуют только людей с большими знаниями и вполне овладевших довольно сложной техникой дела. Иное дело метеорология. Несколько десятков обсерваторий, расположенных самым целесообразным образом по земному шару, с наилучшими наблюдателями и инструментами, все-таки будут далеко недостаточны для изучения очень многих метеорологических явлений. Последние так сложны, так изменчивы в пространстве и во времени, что непременно требуют очень большого количества пунктов наблюдений. Так как было бы немыслимо снабдить десятки и сотни тысяч станций сложными и дорогими инструментами, и еще менее возможно приискать такое число наблюдателей, стоящих на высоте науки и техники, то М. приходится довольствоваться и менее совершенными наблюдениями, и прибегать к содействию широкого круга лиц, не получивших специального образования, но интересующихся явлениями климата и погоды, и выработать для них возможно простые и дешевые инструменты и способы наблюдений. Во многих случаях даже наблюдения ведутся без инструментов. Поэтому ни одна наука так не нуждается в талантливых популярных книгах и статьях, как М.

В настоящее время не имеется полного курса метеорологии, соответствующего современному состоянию науки; единственные два полных курса K ä mtz, "Lehrbuch d. M." (1833) и Schmid, "Lehrbuch der M." (1860) уже значительно устарели во многих частях. Из менее полных руководств, обнимающих все части науки, укажем на von Bebber, "Lehrbuch der M."; Лачинов, "Основы М.". Гораздо короче и популярнее известный курс Mohn, "Grundz ü ge der M."; здесь главное внимание обращено на явления погоды, имеется русский перевод с 1-го немецкого издания: "М., или Наука о погоде". Совершенно самостоятельная книга о погоде: Abercromby, "Weather" (есть немецкий перевод); систематическое руководство по учению о погоде: von Bebber, "Handbuch der aus ü benden Witterungskunde". Книга Поморцева, "Синоптическая М.", по своему характеру стоит посередине вышеупомянутых. По динамической M.: Sprung, "Lehrbuch der М.". По климатологии: Hann, "Handbuch der Klimatologie"; Воейков, "Климаты земного шара". По сельскохозяйственной M.: Houdaille, "Meteorologie agricole"; по лесной М.: Hornberger, "Grundriss der M.". Совершенно популярные, очень краткие курсы "Houzeau et Lancaster Meteorologie"; Skott, "Elementary М.". Сборники наблюдений и периодические издания - см. Метеорологические издания.

МЕТЕОРОЛОГИЯ (от греч. meteorps -поднятый вверх, небесный, meteora -атмосферные и небесные явления и ...логия), наука об атмосфере и происходящих в ней процессах. Осн. раздел М.- физика атмосферы, исследующая физ. явления и процессы в атмосфере. . Хим. процессы в атмосфере изучаются химией атмосферы - новым, быстро развивающимся разделом М. Изучение атм. процессов теоретич. методами гидроаэромеханики - задача динамической метеорологии, одной из важных проблем к-рой является разработка численных методов прогнозов погоды. Др. разделами М. являются: наука о погоде и методах её предсказания - синоптическая метеорология и наука о климатах Земли -климатология, обособившаяся в самостоят, дисциплину. В этих дисциплинах пользуются как физич., так и географич. методами исследования, однако в последнее время физич. направления в них стали ведущими. Влияние атм. факторов на биологич. процессы изучается биометеорологией, включающей с.-х. М. и биометеорологию человека.

В состав физики атмосферы входят: физика приземного слоя воздуха, изучающая процессы в нижних слоях атмосферы; аэрология, посвящённая процессам в свободной атмосфере, где влияние земной поверхности менее существенно; физика верхних слоев атмосферы, рассматривающая атмосферу на высотах в согни и тысячи км, где плотность атм. газов очень мала. Изучением физики и химии верхних слоев атмосферы занимается аэрономия. К физике атмосферы относятся также актинометрия, изучающая солнечную радиацию в атмосфере и её преобразования, атмосферная оптика - наука об оптич. явлениях в атмосфере, атмосферное электричество и атмосферная акустика.

Первые исследования в области М. относятся к античному времени (Аристотель). Развитие М. ускорилось с 1-й пол. 17 в., когда итал. учёные Г. Галилей и Э. Торричелли разработали первые метеорологич. приборы - барометр и термометр.

В 17-18 вв. были сделаны первые шаги в изучении закономерностей атм. процессов. Из работ этого времени следует выделить метеорологич. исследования М. В. Ломоносова и Б. Франклина, к-рые уделяли особое внимание изучению атм. электричества. В этот же период были изобретены и усовершенствованы приборы для измерения скорости ветра, количества выпадающих осадков, влажности воздуха и др. метеорологических элементов. Это позволило начать систе-матич. наблюдения за состоянием атмосферы при помощи приборов, сначала в отд. пунктах, а в дальнейшем (с кон. 18 в.) на сети метеорологич. станций. Мировая сеть метеорологич. станций, проводящих наземные наблюдения на осн. части поверхности материков, сложилась в сер. 19 в.

Наблюдения за состоянием атмосферы на различных высотах были начаты в горах, а вскоре после изобретения аэростата (кон. 18 в.) - в свободной атмосфере. С кон. 19 в. для наблюдения за метеорологич. элементами на различных высотах широко используются шары-пилоты и шары-зонды с самопишущими приборами. В 1930 советский учёный П. А. Молчанов изобрёл радиозонд - прибор, передающий сведения о состоянии свободной атмосферы по радио. В дальнейшем наблюдения при помощи радиозондов стали осн. методом исследования атмосферы на сети аэрологич. станций. В сер. 20 в. сложилась мировая актинометрич. сеть, на станциях к-рой производятся наблюдения за солнечной радиацией и её преобразованиями на земной поверхности; были разработаны методы наблюдений за содержанием озона в атмосфере, за элементами атм. электричества, за химич. составом атм. воздуха и др. Параллельно с расширением метеорологических наблюдений развивалась климатология, основанная на статистическом обобщении материалов наблюдений. Большой вклад в построение основ климатологии внёс А. И. Воейков, изучавший ряд атм. явлений: общую циркуляцию атмосферы, влагооборот, снежный покров и др.

В 19 в. получили развитие эмпирич. исследования атм. циркуляции с целью обоснования методов прогнозов погоды. Работы У. Ферреля в США и Г. Гельм-гольца в Германии положили начало исследованиям в области динамики атм. движений, к-рые были продолжены в нач. 20 в. норв. учёным В. Бьеркнесом и его учениками. Дальнейший прогресс динамич. М. ознаменовался созданием первого метода численного гидродинамич. прогноза погоды, разработанного сов. учёным И. А. Кибелем, и последующим быстрым развитием этого метода.

В сер. 20 в. большое развитие получили методы динамич. М. в изучении общей циркуляции атмосферы. С их помощью амер. метеорологи Дж. Смагоринский и С. Манабе построили мировые карты темп-ры воздуха, осадков и др. метеорологич. элементов. Аналогичные исследования ведутся во мн. странах, они тесно связаны с Междунар. программой исследования глобальных атмосферных процессов (ПИГАП). Значит, внимание в совр. М. уделяется изучению физич. процессов в приземном слое воздуха. В 20-30-х гг. эти исследования были начаты Р. Гейгером (Германия) и др. учёными с целью изучения микроклимата; в дальнейшем они привели к созданию нового раздела М.- физики пограничного слоя воздуха. Большое место занимают исследования изменений климата, в особенности изучение всё более заметного влияния деятельности человека на климат.

М. в России достигла высокого уровня уже в 19 в. В 1849 в Петербурге была основана Главная физическая (ныне геофизическая) обсерватория - одно из первых в мире научных метеорологич. учреждений. Г. И. Вилъд, руководивший обсерваторией на протяжении мн. лет во 2-й пол. 19 в., создал в России образцовую систему метеорологич. наблюдений и службу погоды. Он был одним из основателей Междунар. метеорологич. орг-ции (1871) и председателем между-нар. комиссии по проведению 1-го Междунар. полярного года (1882-83). За годы Сов. власти был создан ряд новых науч. метеорологич. учреждений, к числу к-рых относятся Гидрометцентр СССР (ранее Центр, ин-т прогнозов), Центр, аэрологич. обсерватория, Ин-т физики атмосферы АН СССР и др.

Основоположником сов. школы динамич. М. был А. А. Фридман. В его исследованиях, а также в более поздних работах Н. Е. Кочина, П. Я. Кочи-ной, Е. Н. Блиновой, Г. И. Марчу-ка, А, М. Обухова, А. С. Монина, М. И. Юдина и др. были исследованы закономерности атм." движений различных масштабов, предложены первые модели теории климата, разработана теория атм. турбулентности. Закономерностям радиационных процессов в атмосфере были посвящены работы К. Я. Кондратьева.

В работах А. А. Каминского, Е. С. Рубинштейн, Б. П. Алисова, О. А. Дроздова и др. сов. климатологов был детально изучен климат нашей страны и исследованы атм. процессы, определяющие климатич. условия. В исследованиях, выполненных в Главной геофизической обсерватории, изучался тепловой баланс земного шара и были подготовлены атласы, содержащие мировые карты составляющих баланса. Работы в области си-ноптич. М. (В. А. Бугаев, С. П. Хромов и др.) способствовали значит, повышению уровня успешности метеорологич. прогнозов. В исследованиях сов. агрометеорологов (Г. Т. Селянинов, Ф. Ф.Да-витая и др.) дано обоснование оптимального размещения с.-х. культур на терр. нашей страны.

Существенные результаты получены в Сов. Союзе в работах по активным воздействиям на атм. процессы. Опыты воздействий на облака и осадки, начатые В. Н. Оболенским, получили широкое развитие в послевоен. годы. В результате исследований, проведённых под руководством Е. К. Фёдорова, была создана первая система, позволяющая ослаблять градобитие на большой территории.

Характерной чертой современной М. является применение в ней новейших достижений физики и техники. Так, для наблюдений за состоянием атмосферы используются метеорологические спутники, позволяющие получать информацию о многих метеорологич. элементах для всего земного шара. Для наземных наблюдений за облаками и осадками пользуются радиолокационными методами (см. Радиолокация в метеорологии). Всё возрастающее применение находит автоматизация метеорологич. наблюдений и обработки их данных. В исследованиях по теоретич. М. широко используются ЭВМ, применение к-рых имело громадное значение для усовершенствования численных методов прогнозов погоды. Расширяется использование количественных физич. методов исследования в таких областях М., как климатология, агрометеорология (см. Метеорология сельскохозяйственная), биометеорология человека (см. Климатология медицинская), где ранее они почти не применялись.

Наиболее тесно М. связана с океанологией и гидрологией суши. Эти три науки изучают различные звенья одних и тех же процессов теплообмена и влагообмена, развивающихся в географич. оболочке Земли. Связь М. с геологией и геохимией основана на общих задачах этих наук в исследованиях эволюции атмосферы и изменений климатов Земли в геологич. прошлом. В совр. М. широко используются методы теоретич. механики, а также материалы и методы многих др. физич., химич. и технич. дисциплин.

Одна из гл. задач М. - прогноз погоды на различные сроки. Краткосрочные прогнозы особенно необходимы для обеспечения работы авиации; долгосрочные-имеют большое значение для с. х-ва. Т. к. метеорологич. факторы оказывают существенное влияние на мн. стороны хоз. деятельности, для обеспечения запросов нар. х-ва необходимы материалы о климатич. режиме. Быстро возрастает практич. значение активных воздействий на атм. процессы, в т. ч. воздействий на облачность и осадки, защиты растений от заморозков и др.

Науч. и практич. работами в области М. руководит Гидрометеорологическая служба СССР, созданная в 1929.

Деятельность метеорологич. служб различных стран объединяет Всемирная метеорологическая организация и др. междунар. метеорологич. орг-ции. Международные науч. совещания по различным проблемам М. проводит также Ассоциация метеорологии и физики атмосферы, входящая в состав Геодезич. и геофизич. союза. Наиболее крупными совещаниями по М. в СССР являются Всесоюзные метеорологич. съезды; последний (5-й) съезд состоялся в июне 1971 в Ленинграде. Работы, выполняемые в области М., публикуются в метеорологических журналах.

Лит.: Хргиан А. X., Очерки развития метеорологии, 2 изд., т. 1, Л., 1959; Метеорология и гидрология за 50 лет Советской власти, под ред. Е. К. Фёдорова, Л., 1967; Хромов С. П., Метеорология и климатология для географических факультетов, Л., 1964; Тверской П. Н., Курс метеороло-

гии, Л., 1962; Матвеев Л. Т., Основы общей метеорологии, физика атмосферы, Л., 1965; Фёдоров Е. К., Часовые погоды, [Л.], 1970.