Скорость распространения ударной волны в воде равна. Расчёт скорости ударной волны. Характер распространения ударной волны в воздухе, воде и грунте. Основные параметры ударной волны

Для теоретического изучения микроскопической структуры ударных волн применяется кинетическая теория . Аналитически задача о структуре ударной волны не решается, но применяется ряд упрощённых моделей. Одной из таких моделей является модель Тамма -Мота-Смита .

Скорость распространения ударной волны

Скорость распространения ударной волны в среде превышает скорость звука в данной среде. Превышение тем больше, чем выше интенсивность ударной волны (отношение давлений перед и за фронтом волны): (p уд.волны - p сп.среды)/ p сп.среды .

Например, недалеко от центра ядерного взрыва скорость распространения ударной волны во много раз выше скорости звука. При удалении с ослаблением ударной волны, скорость её быстро снижается и на большой дистанции ударная волна вырождается в звуковую (акустическую) волну, а скорость её распространения приближается к скорости звука в окружающей среде. Ударная волна в воздухе при ядерном взрыве мощностью 20 килотонн проходит дистанции: 1000 м за 1,4 с, 2000 м - 4 с, 3000 м - 7 с, 5000 м - 12 с. Поэтому у человека, увидевшего вспышку взрыва, есть какое-то время для укрытия (складки местности, канавы и пр.) и тем самым уменьшения поражающего воздействия ударной волны .

Ударные волны в твёрдых телах (например, вызванные ядерным или обычным взрывом в скальной породе, ударом метеорита или кумулятивной струёй) при тех же скоростях имеют значительно бо́льшие давления и температуры. Твёрдое вещество за фронтом ударной волны ведёт себя как идеальная сжимаемая жидкость, то есть в нём как бы отсутствуют межмолекулярные и межатомные связи, и прочность вещества не оказывает на волну никакого воздействия. В случае наземного и подземного ядерного взрыва ударная волна в грунте не может рассматриваться, как поражающий фактор , так как она быстро затухает; радиус её распространения невелик и будет целиком в пределах размеров взрывной воронки , внутри которой и без того достигается полное поражение прочных подземных целей.

Ударные волны в специальных условиях

Гидрогазоаналогия

  • Ударная волна, путём нагрева среды, может вызвать экзотермическую химическую реакцию , что, в свою очередь, отразится и на свойствах самой ударной волны. Такой комплекс «ударная волна + реакция горения» носит название волны детонации .
  • В астрофизических объектах ударная волна может двигаться со скоростями, близкими к скорости света. В этом случае ударная адиабата модифицируется.
  • Ударные волны в замагниченной плазме также обладают своими характерными особенностями. При переходе через разрыв, изменяется также и величина магнитного поля , на что тратится дополнительная энергия. Это влечёт за собой существование максимально возможного коэффициента сжатия плазмы при сколь угодно сильных ударных волнах.
  • Касательные ударные волны представляют собой поверхность разрыва смешанного (нормального и тангенциального) типа.

См. также

  • Сверхзвуковое течение

Примечания

Литература

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Wikimedia Foundation . 2010 .

Смотреть что такое "Ударная волна" в других словарях:

    - (скачок уплотнения), распространяющаяся со сверхзвуковой скоростью тонкая переходная область, в к рой происходит резкое увеличение плотности, давления и скорости в ва. У. в. возникают при взрывах, детонации, при сверхзвуковых движениях тел, при… … Физическая энциклопедия

    ударная волна - Распространяющаяся со сверхзвуковой скоростью переходная область в газе, жидкости или в твердом теле, в которой происходит резкое увеличение плотности, давления и скорости среды [ГОСТ 26883 86] [ГОСТ Р 22.0.08 96] ударная волна Ударная волна,… … Справочник технического переводчика

    Распространяющаяся со сверхзвуковой скоростью тонкая переходная область, в которой происходит резкое увеличение плотности, давления и температуры вещества. К наиболее характерным случаям относятся ударные волны, возникающие при взрывах, полете… … Большой Энциклопедический словарь

    УДАРНАЯ ВОЛНА - процесс распространения скачка уплотнения в среде (в грунте, воздухе или воде) со скоростью, превышающей скорость звука в той же среде. Поверхность, отделяющая сжатую среду от невозмущённой, К ст. Ударная волна Распространение звуковых волн и… … Большая политехническая энциклопедия

    Распространяющаяся со сверхзвуковой скоростью в сжимаемой среде тонкая переходная область, в которой происходит резкое увеличение давления р, плотности (ρ), энтропии, скорости среды и др. газодинамических переменных. В механике сплошных сред эту… … Энциклопедия техники

    См. Взрывная волна. Горная энциклопедия. М.: Советская энциклопедия. Под редакцией Е. А. Козловского. 1984 1991 … Геологическая энциклопедия

    УДАРНАЯ ВОЛНА - распространяющаяся со сверхзвуковой скоростью тонкая переходная область, в которой происходит резкое увеличение плотности, давления и температуры вещества. У. в. возникает при взрывах (см. Взрывная волна), полете тел со сверхзвуковой скоростью, в … Российская энциклопедия по охране труда

    УДАРНАЯ ВОЛНА, в текучих средах (жидкостях или газах) быстро перемещающаяся в пределах среды область, характеризующаяся резким перепадом давления и плотности. Ударные волны возникают при движении объектов со сверхзвуковыми скоростями. Т. к.… … Научно-технический энциклопедический словарь

    Распространяющаяся со сверхзвуковой скоростью в газе, жидкости или твердом теле область, в которой происходит резкое увеличение плотности, давления и скорости среды. У.в. при взрыве может поражать людей и животных, разрушать сооружения,… … Словарь черезвычайных ситуаций

Структура ударной волны

Ширина ударных волн большой интенсивности имеет величину порядка длины свободного пробега молекул газа (более точно - ~10 длин свободного пробега, и не может быть менее 2 длин свободного пробега; данный результат получен Чепменом в начале 1950-х). Так как в макроскопической газодинамике длина свободного пробега должна рассматриваться равной нулю, чисто газодинамические методы непригодны для исследований внутренней структуры ударных волн большой интенсивности.

Для теоретического изучения микроскопической структуры ударных волн применяется кинетическая теория. Аналитически задача о структуре ударной волны не решается, но применяется ряд упрощённых моделей. Одной из таких моделей является модель Тамма-Мота-Смита.

Скорость распространения ударной волны

Скорость распространения ударной волны в среде превышает скорость звука в данной среде. Превышение тем больше, чем выше интенсивность ударной волны (отношение давлений перед и за фронтом волны): (p уд.волны - p сп.среды)/ p сп.среды.

Например, недалеко от центра ядерного взрыва скорость распространения ударной волны во много раз выше скорости звука. При удалении с ослаблением ударной волны, скорость её быстро снижается и на большой дистанции ударная волна вырождается в звуковую (акустическую) волну, а скорость её распространения приближается к скорости звука в окружающей среде. Ударная волна в воздухе при ядерном взрыве мощностью 20 килотонн проходит дистанции: 1000 м за 1,4 с, 2000 м - 4 с, 3000 м - 7 с, 5000 м - 12 с. Поэтому у человека, увидевшего вспышку взрыва, есть какое-то время для укрытия (складки местности, канавы и пр.) и тем самым уменьшения поражающего воздействия ударной волны (если, конечно, человек не ослепнет от вспышки).

Ударные волны в твёрдых телах (например, вызванные ядерным или обычным взрывом в скальной породе, ударом метеорита или кумулятивной струёй) при тех же скоростях имеют значительно большие давления и температуры. Твёрдое вещество за фронтом ударной волны ведёт себя как идеальная сжимаемая жидкость, то есть в нём как бы отсутствуют межмолекулярные и межатомные связи, и прочность вещества не оказывает на волну никакого воздействия. В случае наземного и подземного ядерного взрыва ударная волна в грунте не может рассматриваться, как поражающий фактор, так как она быстро затухает; радиус её распространения невелик и будет целиком в пределах размеров взрывной воронки, внутри которой и без того достигается полное поражение прочных подземных целей.

Детонация

Детонация - это режим горения, в котором по веществу распространяется ударная волна, инициирующая химические реакции горения, в свою очередь, поддерживающие движение ударной волны за счёт выделяющегося в экзотермических реакциях тепла. Комплекс, состоящий из ударной волны и зоны экзотермических химических реакций за ней, распространяется по веществу со сверхзвуковой скоростью и называется детонационной волной. Фронт детонационной волны - это поверхность гидродинамического нормального разрыва.

Скорость распространения фронта детонационной волны относительно исходного неподвижного вещества называется скоростью детонации . Скорость детонации зависит только от состава и состояния детонирующего вещества и может достигать нескольких километров в секунду как в газах, так и в конденсированных системах (жидких или твёрдых взрывчатых веществах). Скорость детонации значительно превышает скорость медленного горения, которая всегда существенно меньше скорости звука в веществе и не превышает десятков сантиметров в секунду или нескольких метров в секунду (при горении водород-кислородных смесей).

Многие вещества способны как к медленному горению, так и к детонации. В таких веществах для распространения детонации её необходимо инициировать внешним воздействием (механическим или тепловым). В определённых условиях медленное горение может самопроизвольно переходить в детонацию.

Детонацию, как физико-химическое явление, не следует отождествлять со взрывом.

Взрыв - это процесс, в котором за короткое время в ограниченном объёме выделяется большое количество энергии и образуются газообразные продукты взрыва, способные совершить значительную механическую работу или вызвать разрушения в месте взрыва. Взрыв может иметь место и при воспламенении и быстром сгорании газовых смесей или взрывчатых веществ в ограниченном пространстве, хотя при этом детонационная волна не образуется. Так, быстрое (взрывное) сгорание пороха в стволе артиллерийского орудия в процессе выстрела не является детонацией. Стук, возникающий в двигателях внутреннего сгорания при взрывном сгорании топлива, также называют детонацией.

  • Нормирование параметров микроклимата(см. Лаб. Работу «Исследование параметров микроклимата на рабочих местах»)
  • Производственное освещение.
  • Основные светотехнические величины и единицы их измерения.
  • Измерение освещенности и других светотехнических величин (самостоятельно изучить, лаба, учебник «Охрана труда в машиностроении» под ред. Юдина) Виды и системы производственного освещения
  • Искусственное освещение
  • Светильники и их классификация
  • Нормирование освещения
  • Нормирование искусственного освещения
  • Расчёт производственного освещения Расчёт естественного освещения
  • Расчёт искусственного освещения
  • Организация условий охраны труда и отдыха, направленная на повышение работоспособности человека.
  • Рациональная организация рабочего места
  • Техническая эстетика. Требования охраны труда в производственном помещении.
  • Режимы труда и отдыха.
  • Влияние чрезвычайных ситуаций на психологическое состояние человека.
  • Опасные и вредные факторы среды обитания Окружающая среда
  • Структура и состав атмосферы.
  • Трансформация и взаимодействие загрязнений в окружающей среде. Вторичные явления.
  • Механизм образования смога:
  • Кислотные дожди
  • Разрушение озонового слоя.
  • Электромагнитные поля.
  • Ионизирующие излучения.
  • Экологический кризис.
  • Производственная среда. Пути негативного воздействия производственной среды на биосферу.
  • Производство и технические средства повышенной опасности.
  • Опасные и вредные факторы, характерные для условий труда по избранной специальности.
  • Пути негативного воздействия производственной среды на биосферу.
  • Влияние научно-технического прогресса, демографического взрыва, урбанизации на состояние со и процесс жизнедеятельности человека.
  • Масштабы и последствия негативного воздействия опасных и вредных факторов на человека и окружающую среду.
  • Анатомо-физеологические воздействия на человека опасных и вредных факторов среды обитания. Естественная система человека для защиты от вредных и опасных факторов среды обитания.
  • Рецепторы кожи.
  • Механические колебания
  • Воздействие шума на организм человека
  • Нормирование шума
  • Защита от шума
  • Защита от инфразвука и ультразвука.
  • Защита от вибрации
  • Воздействие электромагнитного поля на человека.
  • Нормирование электромагнитных полей.
  • Защита от электромагнитных полей.
  • Лазерное излучение.
  • Инфракрасное излучение.
  • Электробезопасность. Действие электрического тока на организм человека.
  • Анализ опасности поражения электрическим током в различных электрических сетях.
  • Шаговое напряжение и напряжение прикосновения
  • Классификация помещений по степеням безопасности поражении электрическим током.
  • Защитные меры в электроустановках
  • 6. Защитное заземление
  • Расчет системы защитного заземления (ргр-2) Ионизирующее излучение
  • Краткая характеристика излучений
  • Проникающая радиация и радиоактивное заражение окружающей среды
  • Воздействие радиоактивного заражения на людей и животных.
  • Общие принципы защиты от ионизирующего излучения.
  • Вредные вещества Вредные вещества, их классификация и пути поступления в организм.
  • Нормирование содержания вредных веществ в воздухе.
  • Нормирование содержания вредных веществ в воде.
  • Состав и пдк(предельная допустимая концентрация) активных веществ.
  • Некоторые значения пдк.
  • 3. Отравления и заболевания, вызываемые действием вредных веществ.
  • 4. Защита от вредных выбросов.
  • Характер распространения ударной волны в воздухе, воде и грунте. Основные параметры ударной волны.
  • Воздействие ударной волны на людей и животных.
  • Разрушения и повреждения, вызываемые действием ударной волны.
  • Общие требования к безопасности и экологичности технических средств и технологических процессов.
  • Экспертиза безопасности оборудования и технологических процессов.
  • Экологическая экспертиза проектов.
  • Опасные и чрезвычайные ситуации Классификация чрезвычайных ситуаций. Чрезвычайные ситуации природного происхождения.
  • Стихийные бедствия.
  • Землетрясения.
  • Наводнения
  • Оползни.
  • Снежные лавины
  • Производственные аварии. Современные средства поражения
  • Ядерное оружие.
  • Высотный ядерный взрыв.
  • Химическое оружие.
  • Бактериологическое оружие.
  • Обычные средства поражения.
  • Взрывы и пожаробезопасность. Теоретические основы горения.
  • Основные показатели пожарной безопасности.
  • 1. Температура вспышки.
  • 2. Температура воспламенения.
  • 3. Температура самовоспламенения.
  • Оценка пожарной опасности предприятий.
  • Основные мероприятия по пожарной профилактике.
  • Огнестойкость зданий и сооружений.
  • Некоторые мероприятия по профилактике пожара.
  • Система и аппараты пожаротушения.
  • Основы законодательства рф об охране труда.
  • Ударная волна. Источники образования ударной волны.

    Ударная волна -это область сжатия среды, которая в виде сферического слоя распространяется со сверхзвуковой скоростью во все стороны от источника ее образования. В зависимости от того, в какой среде распространяется ударная волна (в воздухе, воде или грунте), она соответственно называется воздушной ударной волной, ударной волной в воде, сейсмовзрывной волной в грунте.

    Различают ударную волну природного и антропогенного происхождения. К природным волнам относятся ударные волны, вызываемые извержением вулканов, землетрясениями, ураганами, смерчами, паданием метеоритов и т.д. Кантропогенным относятся ударные волны, которые возникают в результате взрывов ядерных устройств, химических взрывов, взрывов на объектах атомной энергетики, взрывов на предприятиях нефтеперерабатывающей и нефтехимической промышленности, взрывов веществ при их перевозке на транспорте, взрывов газовоздушных смесей или смесей горючих жидкостей и газов с воздухом. На данный момент широко изучено действие ударной волны при взрыве ядерных устройств. В этом случае проявляются все стороны поражающего действия ударной волны и наблюдаются все ее основные параметры.

    Ударная волна является основным поражающим фактором взрывов ядерных устройств (ядерных взрывов). Большинство разрушений и повреждений зданий и сооружений, оборудования промышленных объектов, а также поражение людей, как правило, обусловлено действием ударной волны.

    Наряду с ударными волнами другими поражающими факторами взрыва ядерных устройств являются световое излучение, проникающая радиация, радиоактивное заражение, электромагнитный импульс . Распределение энергии между поражающими факторами зависит от вида взрыва и условий, в которых он происходит. Приназемном и воздушном взрыве до 50% расходуется на образование избыточного давления ударной волны, около 30% на световое излучение, до 15% на радиоактивное заражение и около 5% на проникающую радиацию.

    Характер распространения ударной волны в воздухе, воде и грунте. Основные параметры ударной волны.

    Воздушная ударная волна образуется за счет огромной энергии, выделяемой в зоне ядерной реакции, где температура достигает 10000С, а давление - 10 5 -10 6 Па.

    Раскаленные пары и газы расширяются, производя тем самым резкий удар по окружающим слоям воздуха, в результате чего происходит сжатие этих воздушных слоев до высокого давления и большой плотности, а также нагрев до высоких температур. Сжатие и перемещение воздуха происходит от одного слоя к другому во все стороны от места взрыва, образуя тем самым ударную волну. Расширение раскаленных газов действует на небольших расстояниях от центра взрыва. На более значительных расстояниях действует воздушная ударная волна (в основном). Возле центра взрыва скорость ударной волны значительно превышает скорость звуковых волн. С увеличением расстояния от центра взрыва скорость ударной волны быстро убывает, а действие самой ударной волны быстро ослабевает. На больших расстояниях она, как правило, переходит в звуковую волну. Воздушная ударная волна при взрывах средней мощности проходит примерно 1000 м за 1.4с, 2000 м за 4с, 3000м за 7с и 5000 м за 12с.

    На графике показан характер изменения давления с течением времени в какой-либо фиксированной точке пространства.

    С приходом в? точку фронта ударной волны давление воздуха резко возрастает, также резко возрастает плотность воздуха, температура и скорость внешней среды.

    После того, как фронт ударной волны пройдет данную точку пространства, давление в ней постепенно снижается и через некоторый промежуток времени становится равным атмосферному Р 0 . Образовавшийся слой сжатого воздуха являетсяфазой сжатия (τ+ ) , в этот период времени ударная волна обладает наибольшим разрушающим действием. По мере удаления от центра взрыва давление во фронте ударной волны уменьшается, а толщина слоя сжатия со временем возрастает.

    Последнее происходит за счет привлечения новых масс воздуха. Далее давление становится ниже атмосферного, воздух начинает двигаться в направлении, противоположном распространению ударной волны, то есть к центру взрыва. Эта зона пониженного давления называется фазой разряжения (τ- ). Вфазе разряжения ударная волна производит гораздо меньшее разрушение, чем в фазе сжатия, так как максимальное отрицательное давление-ΔР значительно меньше максимального избыточного давления во фронте ударной волны. После окончания периода действия фазы разрушения, когда давление достигает значения атмосферного, прекращается движение фаз воздуха, и следовательно, разрушающего воздействия ударной волны. Непосредственно за фронтом ударной волны в области сжатия движутся массы воздуха.

    Вследствие торможения этих масс воздуха при встрече с преградой возникает давление скоростного напора. Основными параметрами ударной волны, определяющими ее поражающее действие, являются

      избыточное давление во фронте ΔР Ф ,

      скоростной напор ΔР ск ,

      время действия Т ув .

    Избыточное давление во фронте ударной волны это разница между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед фронтом.

    ΔР Ф Ф 0

    Единицей измерения избыточного давления в системе Си является Па. Значение избыточного давления в какой-либо точке зависит от расстояния до центра взрыва, мощности и вида взрыва.

    Скоростной напор -это динамические нагрузки, создаваемые потоком воздуха во фронте ударной волны. Как и избыточное давление, измеряется в Па. Скоростной напор зависит от плотности воздуха, скорости движения воздушных масс и связан с избыточным давлением. Разрушающее действие скоростного напора сказывается в областях с избыточным давлением> 50 кПа.

    Время действия УВ – это время действия избыточного давления. Зависит, главным образом, от избыточного давления и скорости воздуха.

    Взрывная волна

    порожденное взрывом движение среды. Под воздействием высокого давления газов, образовавшихся при взрыве, первоначально невозмущённая среда испытывает резкое сжатие и приобретает большую скорость. Состояние движения передаётся от одного слоя среды к другому так, что область, охваченная В. в., быстро расширяется. На фронте расширяющейся области среда скачком переходит из исходного невозмущённого состояния в состояние движения с более высокими давлением, плотностью и температурой. Происходящее скачком изменение состояния среды - Ударная волна - распространяется со сверхзвуковой скоростью.

    В. в. характеризуется изменением давления, плотности и скорости среды с течением времени в различных точках пространства или распределением этих величин в пространстве в фиксированные моменты времени.

    Одним из важных параметров, определяющих механическое действие В. в., служит создаваемое волной максимальное давление. При взрывах в газообразных и жидких средах максимальное давление достигается в момент сжатия среды в ударной волне. Др. важным параметром является интервал времени действия В. в. По мере удаления от места взрыва максимальное давление уменьшается, а время действия увеличивается (рис. 1 ).

    При распространении В. в. в твердых средах ударный фронт сравнительно быстро исчезает, и В. в. превращается в ряд последовательных быстро затухающих колебаний, распространяющихся со скоростью упругих волн.

    В. в. обладают свойством подобия. В соответствии с этим свойством при взрывах зарядов химического взрывчатого вещества одинаковой формы, но различной массы, расстояния, на которых максимальное давление во В. в. имеет одно и то же значение, относятся между собой как кубические корни из масс зарядов. В том же отношении изменяется интервал времени действия В. в. Например, если увеличить расстояния и интервал времени, приведённые на рис. 1 , в 10 раз, то такая В. в. будет соответствовать взрыву уже не 1 кг, а 1 т тринитротолуола (тротила).

    В. в. имеет тенденцию к быстрой утрате особенностей, обусловленных природой взрыва, так что её последующее движение в основном определяется лишь величиной энергии, передаваемой окружающей среде. Благодаря этому обстоятельству В. в., порожденные в одной и той же среде взрывами разного типа, в основных чертах оказываются подобными, что позволяет ввести для характеристики взрывов так называемый Тротиловый эквивалент .

    Распространяющаяся В. в. затрачивает на нагревание среды вблизи очага взрыва значительную часть своей механической энергии. Например, на расстоянии 10 км воздушная В. в., порожденная взрывом 1000 т химического взрывчатого вещества, содержит примерно 10% первоначальной энергии взрыва, а при ядерном взрыве той же энергии - вдвое меньше (из-за бо́льших потерь на нагревание воздуха). Максимальное повышение давления в волне для указанных значений расстояния и энергии взрыва измеряется сотнями н/м 2 (тысячными долями кгс/см 2). На больших расстояниях В. в. представляет собой звуковую волну (или упругую волну в твёрдой среде).

    Звуковые волны в атмосфере (или упругие волны в земной коре), порождённые взрывами достаточно большой энергии, могут быть зарегистрированы специальными приборами (микробарографами, Сейсмограф ами и др.) на очень больших расстояниях. Например, при взрывах с энергией порядка 10 13 дж (несколько тысяч т тринитротолуола) волны регистрируются на расстояниях в нескольких тысяч км, а при энергиях взрывов Взрывная волна 10 16 дж (нескольких млн. т ) - практически в любой точке земного шара. На таких больших расстояниях В. в. представляет собой длинную последовательность колебаний атмосферного давления (или колебаний почвы - при подземных взрывах) очень низкой частоты (рис. 2 ).

    Лит.: Расчет точечного взрыва с учетом противодавления, М., 1957; Седов Л. И., Методы подобия и размерности в механике, 4 изд., М., 1957; Ляхов Г. М., Покровский Г. И., Взрывные волны в грунтах, М., 1962; Губкин К. Е., Распространение взрывных волн, в сб.: Механика в СССР за 50 лет, т. 2, М., 1970.

    К. Е. Губкин.

    Изменение давления со временем в воздушной взрывной волне на расстояниях 1 м , 2,7 м и 11 м от центра взрыва сферического заряда тринитротолуола массой 1 кг .

    Запись колебаний атмосферного давления в воздушной волне на расстоянии 11 500 км от места взрыва с энергией 1016 дж. Волна пробегает такое расстояние примерно за 10 ч.


    Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

    Смотреть что такое "Взрывная волна" в других словарях:

      Порождённое взрывом движение среды. Под воздействием высокого давления газов, образовавшихся при взрыве, окружающая очаг взрыва среда испытывает сжатие и приобретает большую скорость. Движение передаётся от одного слоя к другому, так что область … Физическая энциклопедия

      Современная энциклопедия

      Взрывная волна - ВЗРЫВНАЯ ВОЛНА, возникающее в результате взрыва движение среды. Скачкообразное изменение состояния вещества на фронте взрывной волны распространяется со сверхзвуковой скоростью (смотри Ударная волна). Поверхность фронта взрывной волны непрерывно… … Иллюстрированный энциклопедический словарь

      - (a. blast wave, blast air, explosive wave; н. Explosionswelle; ф. onde explosive; и. onda explosiva) процесс кратковременного нарушения равновесного состояния среды (газообразной, жидкой или твёрдой), распространяющийся из взрывного… … Геологическая энциклопедия

      Ударная волна, возникающая при взрыве. Фронт взрывной волны движется от центра взрыва со скоростью, превышающей скорость звука, при этом поверхность фронта взрывной волны монотонно увеличивается, а скорость ее движения и интенсивность убывают … Большой Энциклопедический словарь

      Порожденное взрывом движение среды, при котором происходит резкое повышение ее плотности, давления и температуры. Происходящее скачком изменение состояния среды ударная волна распространяется со сверхзвуковой скоростью. На больших расстояниях… … Морской словарь

      Взрывная волна - порождаемая взрывом область сильного сжатия среды (газообразной, жидкой или твердой), быстро распространяющаяся во все стороны от места взрыва. Импульс от одного слоя к др. передается за счет ударного сжатия, вызывающего в среде скачок уплотнения … Российская энциклопедия по охране труда

      ВЗРЫВНАЯ ВОЛНА - (ударная волна) упругая деформация среды, в которой произошёл (см.) В. в. представляет собой область сильного сжатия среды (воздуха, воды, земли), распространяющуюся от места взрыва со сверхзвуковой скоростью. Образуется в результате расширения… … Большая политехническая энциклопедия

      Область сжатой продуктами взрыва среды, распространяющаяся от места взрыва со сверхзвуковой скоростью. На внешней границе этой области, представляющей собой фронт ударной волны, среда скачком переходит в состояние движения с более высокими… … Словарь черезвычайных ситуаций

      взрывная волна - — Тематики нефтегазовая промышленность EN detonation waveexplosion waveblast wave … Справочник технического переводчика

      Ударная волна, возникающая при взрыве. Фронт взрывной волны движется от центра взрыва со скоростью, превышающей скорость звука, при этом поверхность фронта взрывной волны монотонно увеличивается, а скорость её движения и интенсивность убывают. *… … Энциклопедический словарь

    Книги

    • Криминальные войны РУОП , П. Дашкова , А. Молчанов , С. Устинов , Б. Руденко , А. Волос , А. Сергеев , Кто самый серьезный противник РУОП? Как разрабатываются операции по внедрению в организованные преступные группировки? Какова специфика работы для настоящих мужчин? Кто такие бойцы в масках?… Категория: Отечественный мужской детектив Издатель:

    УДАРНАЯ ВОЛНА - движущаяся по веществу поверхность разрыва непрерывности скорости течения, давления, и др. величин. У. в. возникают при взрывах, детонации, при сверхзвуковых движениях тел (см. Сверхзвуковое течение ), при мощных электрич. разрядах и т. д. Напр., при воздушном взрыве взрывчатых веществ (BB) образуются высоконагретые продукты, находящиеся под большим давлением. Продукты взрыва под действием давления расширяются, приводя в движение и сжимая сначала ближайшие, а затем всё более далёкие слои воздуха. Поверхность, к-рая отделяет сжатый воздух от невозмущённого, представляет собой У. в.

    Простейший пример возникновения и распространения У. в.- сжатие газа в трубе поршнем. Если первоначально покоившийся поршень мгновенно приходит в движение с пост. скоростью и , то сразу же непосредственно перед ним возникает У. в. Скорость её распространения D по невозмущённому газу постоянна и больше и . Поэтому расстояние между поршнем и У. в. увеличивается пропорц. времени движения. Скорость газа за У. в. совпадает со скоростью поршня (рис. 1). Если поршень разгоняется до скорости и постепенно, то У. в. образуется не сразу. Вначале возникает волна сжатия с непрерывным распределением плотности и давления. С течением времени крутизна волны сжатия нарастает, т. к. возмущения от ускоряемого поршня догоняют её и усиливают, приводя в итоге к разрыву непрерывности всех гидродинамич. величин и к образованию У. в. (см. базовая динамика) .

    Рис. 1. Распределения плотности r в последовательные моменты времени t = 0, t 1 , t 2 в ударной волне, возбужда емой поршнем, движущимся с постоянной скоростью и (D -скорость ударной волны; D>u) .

    Существуют п р я м ы е У. в., в к-рые вещество втекает по нормали к поверхности, и к о с ы е У. в. Последние возникают, напр., при сверхзвуковом движении тел - ракет, спускаемых космич. аппаратов, снарядов и др., когда перед телом движется У. в. Геометрия У. в. зависит от формы тела и от др. параметров. Поэтому в системе координат, где У. в. покоится, газ втекает в каждый элемент её поверхности под своим углом. Если этот угол не прямой, то элемент поверхности представляет собой косую У. в. На косой У. в. претерпевает разрыв нормальная составляющая скорости вещества, но тангенциальная составляющая непрерывна. Следовательно, на косой У. в. линии тока преломляются (о косых У. в. см. Уплотнения скачок ).Путём перехода к новой системе координат, движущейся параллельно поверхности разрыва, косую У. в. всегда можно свести к прямой. Поэтому первостепенный интерес представляют прямые У. в., и далее речь идёт только о них.

    Законы ударного сжатия . Состояния вещества по обе стороны У. в.: давление р , плотность r, скорость течения относительно У. в. u и уд. внутр. энергия e связаны т. н. с о о тн о ш е н и я м и Р е н к и н а - Г ю г о н ь о:


    к-рые выражают законы сохранения массы, импульса и энергии. Индексы 1 и 2 относятся соответственно к величинам перед У. в. и за ней. Кроме того, величины Е, р исвязаны уравнением состояния . Скорость распространения У. в. по невозмущённому веществу равна Т. о., при заданных параметрах вещества перед волной Р 1 ишесть величин:связаны пятью ур-ниями, т. е. У. в. при заданных р 1 и r 1 характеризуется всего одним независимым параметром, напр. D или р 2 , через к-рый могут быть выражены все остальные величины.

    Интенсивность У. в. обычно характеризуют относительным скачком давления или Маха числом где a 1 - в веществе перед У. в. Для У. в. малой и большой интенсивности соответственно Если

    Из системы (1) получаются следующие выражения дляии для скорости течения и относительно вещества перед У. в. (скорость газа в лаб. системе координат на рис. 1):


    (где-уд. объём), а также соотношение

    Рис. 8. Распределения относительной плотности ионов n = N/N 0 , степени ионизации a, безразмерных электрон ной и ионной температур q e = kT e /M A D 2 , q i =kT i /M A D 2 (M А - масса атома) в ударной волне в воздухе при D = 58 км/с; плотность атомов перед ударной волной r 1 =3,5 . 10 15 см -3 .

    Измерение яркости У. в. позволяет судить о темп-ре T 2 . При T 2 10000 К прогретый слой воздуха частично экранирует видимое излучение газа, идущее из-за У. в., к-рое в холодном воздухе распространялось бы практически без поглощения. Эффект экранировки не позволяет регистрировать очень высокие значения T 2 . В воздухе нормальной плотности яркостная темп-pa никогда не превышает 50000 К, сколь бы велика не была темп-pa T 2 .

    Экспериментальные (в осн. в опытах с ударными трубами) и теоретич. исследования излучения У. в. имеют большое практич. значение в связи с проблемами защиты сверхзвуковых летательных аппаратов от радиац. перегрева, создания мощных импульсных источников эл--магн. излучения и др.

    Магнитогидродинамические У. в . распространяются в электропроводящем (ионизованном) газе в присутствии внеш. магн. поля. Их теория строится на основе ур-ний магнитной гидродинамики . Соотношения типа (1) с учётом магн. сил дополняются условиями, к-рым подчиняются электрич. и магн. поля на границе двух сред. Магн. эффекты проявляются тем сильнее, чем больше отношение магн. давления H 2 / 8p к давлению газа, где H -напряжённость магн. поля. Благодаря дополнит. параметрам и переменным, характеризующим величину и направление магн. поля по обе стороны разрыва, магнитогидродинамич. У. в. отличаются большим разнообразием свойств по сравнению с обычными У. в.

    Бесстолкновительные У. в . В чрезвычайно разреженной плазме (лабораторной, космической), где частицы практически не сталкиваются между собой, также возможны У. в. При этом ширина У. в. оказывается гораздо меньше длин пробега частиц. Механизм диссипации, приводящей к превращению части кинетич. энергии направленного движения невозмущённого газа (в системе координат, движущейся вместе с У. в.) в энергию теплового движения, связан с коллективными взаимодействиями в плазме и возбуждением плазменных колебаний. В присутствии магн. поля в бесстолкновительных ударных волнах существенны также эффекты закручивания ионов и индуцирования электрич. полей при вытеснении магн. поля движущейся плазмой. Масштабом ширины бесстолкновительных У. в. служит величина с/ w р , где с - скорость света, w p = =(4 pе 2 п е /т ) 1/2 - плазменная частота.

    У. в. в газовзвесях . При распространении У. в. по газу с малой объёмной концентрацией пыли в СУ ускоряется, сжимается и нагревается только газовая компонента, т. к. макроскопич. частицы пыли очень редко сталкиваются между собой, а при взаимодействии с газом их скорость и темп-pa изменяются сравнительно медленно, и за СУ в релаксац. зоне происходит постепенное выравнивание скоростей течения и темп-р компонент. При этом относительная массовая концентрация пыли проходит через максимум, т. к. в СУ она была понижена, а в среднем по всему объёму должна быть такой же, как перед У. в. Часто пыль бывает горючей (в угольных шахтах, на мельницах, элеваторах и т. д.). Изучение условий возгорания пыли в У. в. с возможным переходом горения в детонацию - одна из важных научных и прикладных проблем.

    У. в. в конденсированных средах . В конденсированных средах (твёрдых телах и жидкостях) в У. в., получаемых, в лаб. условиях, достижим чрезвычайно широкий диапазон давлений. При детонации конденсированных BB возникают и затем переходят в контактирующее с BB исследуемое вещество - твёрдое тело или жидкость - У. в. с давлением до неск. сотен кбар. С помощью кумулятивных зарядов достигаются давления порядка мегабар. Для получения У. в. очень большой интенсивности используются также спец. газовые и др. пушки, к-рыми разгоняются снаряды- пластины, ударяющие затем по преграде из исследуемого вещества. Благодаря разработанным в 1940-50-х гг. методам получения и диагностики У. в. стали могучим и во многом незаменимым средством эксперим. исследования физ--хим. и др. свойств веществ в экстремальных условиях. Особенно широко У. в. используются для определения ур-ний состояния твёрдых тел и жидкостей при высоких давлениях и темп-pax, не достижимых в статич. экспериментах. Измерив две скорости-D и и , можно вычислить p 2 и u 2 по ф-лам

    к-рые следуют из (2), и найти затем e 2 из (3). (Скорость и измеряется эл--магн. методом или т. н. методом откола- путём измерения скорости откалывающейся пластины, образующейся при выходе У. в. на свободную поверхность исследуемого образца.) Произведя измерения и расчёты при разл. интенсивностях У. в., находят зависимость р 2 и e 2 от u 2 на УA. Иногда вместо или дополнительно к скорости и измеряют давление (пьезодатчиком), плотность (рентген) или темп-ру (в прозрачных веществах). (Применительно к конденсир. средам такие измерения менее универсальны и обычно технически более сложны.) В табл. 2 приведены данные для УA свинца:

    , .

    Табл. 2.


    * Значения T 2 вычислены по ур-нию состояния .

    УА жидкостей и (с точностью до сравнительно малых отклонений, связанных с изменением характера деформации при переходе через предел упругости) твёрдых тел при малых степенях сжатия, , мало отличаются от изоэнтропы и обычно хорошо аппроксимируются ф-лой


    где А и n -параметры, определяемые при аппроксимации. Напр., для воды А 3000 атм, n 7-8, для металлов n 4, для железа, меди и дюралюминия значения А соответственно равны 500, 250 и 200 кбар. Более информативные данные об ур-ниях состояния получаются в тех случаях, когда для одного и того же вещества удаётся измерить не одну, а две или неск. УА. Для этого нужно изменять параметры нач. состояния вещества. Это достигается: а) путём отражения У. в. от жёсткой преграды. Отражённая У. в. распространяется по веществу, сжатому и нагретому в падающей У. в.; б) путём спец. приготовления вещества в сильно пористом состоянии. Напр., естественным пористым состоянием воды или льда является рыхлый снег. При ударноволновом сжатии до одного и того же уд. объёма пористое вещество всегда нагревается сильнее и давление в нём обычно больше. Поскольку ур-ние состояния определяет связь между e, p и V на плоскости р, V , а не только на отд. линиях, таким эмпирич. способом получить ур-ние состояния нельзя. Но можно найти или существенно уточнить"парамстры аналитич. ур-ния состояния, полученного к--л. др. приближённым способом. Это особенно важно, поскольку теория ур-ний состояния кон-денсир. сред базируется на весьма приближённых моделях и её возможности количественных предсказаний ограниче-ны. Таким полуэмпирич. путём найдены ур-ния состояния MH. элементов и соединений - металлов, сплавов, минералов, горных пород, полимеров, воды и др. жидкостей. Данные об ур-нии состояния элементов, минералов и горных пород, полученные в опытах с У. в., нашли широкое применение в науке о Земле и др. планетах Солнечной системы и позволили перейти в изучении внутр. строения планет и их спутников на качественно новую ступень.

    Ширина СУ в У. в. большой интенсивности в конденсир. средах примерно в 1000 раз меньше, чем в газах нормальной плотности. Столь же сильно сокращается зона коле-бат. релаксации в молекулярных жидкостях и кристаллах при одинаковой темп-ре T 2 . Плавление происходит настолько быстро, что в структуре У. в. очень редко удаётся наблюдать твёрдое тело в метастабильном, перегретом состоянии. Скорость полиморфных превращений изменяется в чрезвычайно широких пределах в зависимости от механизма перестройки кристаллич. решётки и от интенсивности У. в. Если новая кристаллич. модификация может быть получена путём упорядоченного малого смещения атомов, обусловленного объёмной и сдвиговой деформацией исходной решётки (механизм т. н. мартенситного типа), то после нек-рого пересжатия (относительно термо-динамич. границы фаз) превращение идёт очень быстро - за времена порядка 10 -8 с или менее. Необходимая степень пересжатия зависит от кол-ва и распределения дефектов исходной решётки (начальных и возникающих в процессе ударноволнового сжатия) и от концентрации новой фазы. Поэтому диапазон давлений, в к-ром сосуществуют обе кристаллич. модификации, обычно велик по сравнению с термодинамически равновесным. Быстрая перестройка решётки наблюдается, напр., в железе и галогени-дах калия. Если для построения новой кристаллич. решётки нужны сложные перестановки атомов, осуществимые путём термодиффузии с преодолением огромных активац. барьеров от неск. эВ до десятков эВ, новая кристаллич. модификация либо не образуется вовсе (вплоть до таких интенсивностей У. в., при к-рых область её термодинамич. устойчивости заканчивается и образуется др. кристаллич. фаза более высокого давления или вещество плавится), либо образование новой кристаллич. модификации происходит путём термодиффузии в местах сильного неоднородного разогрева исходной решётки при пластич. течении (т. н. гетерогенный механизм фазового перехода). При этом остальная масса вещества находится в метастабильном состоянии. Напр., при распространении У. в. по кварциту не наблюдается образования более плотной фазы высокого давления - коэсита, а переход в ещё более плотную модификацию - стишовит (или стишовитоподобную аморфную фазу) продолжается вплоть до давлений ~400-450 кбар, тогда как в термодинамич. равновесных условиях образование стишовита в У. в. начиналось и заканчивалось бы в относительно узком интервале давлений в окрестности точки с давлением ~ 100 кбар. Не претерпевший фазового превращения кварцит теряет устойчивость и аморфизуется при давлениях 230-300 кбар.

    Образовавшиеся в У. в. кристаллич. и аморфные структуры нередко сохраняются сколь угодно долго в метаста-бильных состояниях после снятия давления. Исходное вещество тоже может быть в метастабильном состоянии. Такое многообразие возможностей используется для получения в У. в. известных и новых модификаций веществ с заданными, часто уникальными физико-хим. и механич. свойствами, напр. техн. алмаза и высокотвёрдой модификации нитрида бора -боразона. Уникальность свойств ме-тастабильных веществ, получаемых в У. в., обусловлена тем, что воздействие У. в. на конденсир. вещество не эквивалентно медленному сжатию и нагреву. Важна кинетика процессов в У. в. и при последующей разгрузке.

    У. в. используются в наукоёмких технол. процессах упрочнения машиностроительных деталей, резки и сварки металлов, прессования порошков и др.

    Лит.: 1) Ландау Л. Д., Лифшиц E. M., Гидродинамика, 4 изд., M., 1988; 2) Зельдович Я. Б., Райзер Ю. П., Физика ударных волн и высокотемпературных гидродинамических явлений, 2 изд., M., 1966; 3) Кузнецов H. M., Термодинамические функции и ударные адиабаты воздуха при высоких температурах, M., 1965; 4) Ступоченко E. В., Лосев С. А., Осипов А. И., Релаксационные процессы в ударных волнах, M., 1965; 5) Be-ликовичА. Л., Либерман M. А., Физика ударных волн в газах и плазме, M., 1987; 6) Арцимович Л. А., Сагдеев P. 3., Физика плазмы для физиков, M, 1979; 7) Ландау Л. Д., Лифшиц E. M., Электродинамика сплошных сред, 2 изд., M., 1982; 8) Кузнецов H. M., Устойчивость ударных волн, "УФН", 1989, т. 159, в. 3, с. 493; 9) Альтшулер Л. В., Применение ударных волн в физике высоких давлений, "УФН", 1965, т. 85, в. 2, с. 197; 10) Динамические исследования твердых тел при высоких давлениях, Сб., пер. с англ., M., 1965; 11) Аврорин E. H. [и др.], Мощные ударные волны и экстремальные состояния вещества, "УФН", 1993, т. 163, № 5, с. 1.

    H. M. Кузнецов, Ю. П. Райзер .