Как определить химическую связь. Основные типы химической связи. Свойства ковалентной связи

Понятие химической связи имеет немаловажное значение в различных областях химии как науки. Связано это с тем, что именно с ее помощью отдельные атомы способны соединяться в молекулы, образуя всевозможные вещества, которые, в свою очередь, являются предметом химических исследований.

С многообразием атомов и молекул связано возникновение различных типов связей между ними. Для разных классов молекул характерны свои особенности распределения электронов, а значит, и свои виды связей.

Основные понятия

Химической связью называют совокупность взаимодействий, которые приводят к связыванию атомов с образованием устойчивых частиц более сложного строения (молекул, ионов, радикалов), а также агрегатов (кристаллов, стекол и прочего). Природа этих взаимодействий носит электрический характер, а возникают они при распределении валентных электронов в сближающихся атомах.

Валентностью принято называть способность того или иного атома образовывать определенное число связей с другими атомами. В ионных соединениях за значение валентности принимают число отданных или присоединенных электронов. В ковалентных соединениях она равна количеству общих электронных пар.

Под степенью окисления понимают условный заряд, который мог бы быть на атоме, если бы все полярные ковалентные связи имели бы ионный характер.

Кратностью связи называют число обобществленных электронных пар между рассматриваемыми атомами.

Связи, рассматриваемые в различных разделах химии, можно разделить на два вида химических связей: те, которые приводят к образованию новых веществ (внутримолекулярные), и те, которые возникают между молекулами (межмолекулярные).

Основные характеристики связи

Энергией связи называют такую энергию, которая требуется для разрыва всех имеющихся связей в молекуле. Также это энергия, выделяющаяся в ходе образования связи.

Длиной связи именуют такое расстояние между соседними ядрами атомов в молекуле, при котором силы притяжения и отталкивания уравновешены.

Эти две характеристики химической связи атомов являются мерой ее прочности: чем меньше длина и больше энергия, тем связь прочнее.

Валентным углом принято называть угол между представляемыми линиями, проходящими по направлению связи через ядра атомов.

Методы описания связей

Наиболее распространены два подхода к объяснению химической связи, заимствованные из квантовой механики:

Метод молекулярных орбиталей. Он рассматривает молекулу в качестве совокупности электронов и ядер атомов, причем каждый отдельно взятый электрон движется в поле действия всех других электронов и ядер. Молекула имеет орбитальное строение, а все ее электроны распределены по этим орбитам. Также этот метод носит название МО ЛКАО, что расшифровывается как "молекулярная орбиталь - линейная комбинация

Метод валентных связей. Представляет молекулу системой двух центральных молекулярных орбиталей. При этом каждая из них соответствует одной связи между двумя расположенными по соседству атомами в молекуле. Основывается метод на следующих положениях:

  1. Образование химической связи осуществляется парой электронов, имеющих противоположные спины, которые расположены между двумя рассматриваемыми атомами. Образованная электронная пара принадлежит двум атомам в равной степени.
  2. Число связей, образованных тем или иным атомом, равняется числу неспаренных электронов в основном и возбужденном состоянии.
  3. Если электронные пары не принимают участия в образовании связи, то их называют неподеленными.

Электроотрицательность

Определить тип химической связи в веществах можно, основываясь на разнице в значениях электроотрицательностей составляющих ее атомов. Под электроотрицательностью понимают способность атомов оттягивать на себя общие электронные пары (электронное облако), что приводит к поляризации связи.

Существуют различные способы определения значений электроотрицательностей химических элементов. Однако наиболее применяемой является шкала, основанная на термодинамических данных, которая была предложена еще в 1932 году Л. Полингом.

Чем значительнее разница в электроотрицательностях атомов, тем в большей степени проявляется ее ионность. Напротив, равные или близкие значения электроотрицательности указывают на ковалентный характер связи. Иначе говоря, определить, какая химическая связь наблюдается в той или иной молекуле, можно математически. Для этого нужно вычислить ΔХ - разность электроотрицательностей атомов по формуле: ΔХ=|Х 1 2 |.

  • Если ΔХ>1,7, то связь является ионной.
  • Если 0,5≤ΔХ≤1,7, то ковалентная связь носит полярный характер.
  • Если ΔХ=0 или близка к нему, то связь относится к ковалентной неполярной.

Ионная связь

Ионной называется такая связь, которая появляется между ионами или за счет полного оттягивания общей электронной пары одним из атомов. В веществах этот тип химической связи осуществляется силами электростатического притяжения.

Ионы - это заряженные частицы, образующиеся из атомов в результате присоединения или отдачи электронов. Если атом принимает электроны, то приобретает отрицательный заряд и становится анионом. Если же атом отдает валентные электроны, то становится положительно заряженной частицей, называемой катионом.

Она характерна для соединений, образованных при взаимодействии атомов типичных металлов с атомами типичных неметаллов. Основной этого процесса является стремление атомов приобрести устойчивые электронные конфигурации. А типичным металлам и неметаллам для этого нужно отдать или принять всего 1-2 электрона, что они с легкостью и делают.

Механизм образования ионной химической связи в молекуле традиционно рассматривают на примере взаимодействия натрия и хлора. Атомы щелочного металла с легкостью отдают электрон, перетягиваемый атомом галогена. В результате образуется катион Na + и анион Cl - , которые удерживаются рядом с помощью электростатического притяжения.

Идеальной ионной связи не существует. Даже в таких соединениях, которые зачастую относят к ионным, окончательного перехода электронов от атома к атому не происходит. Образованная электронная пара все-таки остается в общем пользовании. Поэтому говорят о степени ионности ковалентной связи.

Ионная связь характеризуется двумя основными свойствами, связанными друг с другом:

  • ненаправленность, т. е. электрическое поле вокруг иона имеет форму сферы;
  • ненасыщаемость, т. е. число противоположно заряженных ионов, которое может разместиться вокруг какого-либо иона, определяется их размерами.

Ковалентная химическая связь

Связь, образующаяся при перекрывании электронных облаков атомов неметаллов, то есть осуществляющаяся общей электронной парой, называется ковалентной связью. Число обобществленных пар электронов определяет кратность связи. Так, атомы водорода связаны одинарной связью Н··Н, а атомы кислорода образуют двойную связь О::О.

Существует два механизма ее образования:

  • Обменный - каждый атом представляет для образования общей пары по одному электрону: А· + ·В= А:В, при этом в осуществлении связи участвуют внешние атомные орбитали, на которых расположены по одному электрону.
  • Донорно-акцепторный - для образования связи один из атомов (донор) предоставляет пару электронов, а второй (акцептор) - свободную орбиталь для ее размещения: А + :В= А:В.

Способы перекрывания электронных облаков при образовании ковалентной химической связи также различны.

  1. Прямое. Область перекрывания облаков лежит на прямой воображаемой линии, соединяющей ядра рассматриваемых атомов. При этом образуются σ-связи. От типа электронных облаков, подвергающихся перекрыванию, зависит вид химической связи, которая при этом возникает: s-s, s-p, p-p, s-d или p-d σ-связи. В частице (молекуле или ионе) между двумя соседними атомами возможно осуществление только одной σ-связи.
  2. Боковое. Осуществляется по обе стороны от линии, соединяющей ядра атомов. Так образуется π-связь, причем также возможны ее разновидности: p-p, p-d, d-d. Отдельно от σ-связи π-связь никогда не образуется, она может быть в молекулах, содержащих кратные (двойные и тройные) связи.

Свойства ковалентной связи

Именно ими определяются химические и физические особенности соединений. Главными свойствами любой химической связи в веществах является ее направленность, полярность и поляризуемость, а также насыщаемость.

Направленностью связи обусловлены особенности молекулярного строения веществ и геометрическая форма их молекул. Суть ее состоит в том, что наилучшее перекрывание электронных облаков возможно при определенной их ориентации в пространстве. Выше уже рассмотрены варианты образования σ- и π-связи.

Под насыщаемостью понимают способность атомов образовывать определенное число химических связей в молекуле. Количество ковалентных связей для каждого атома ограничивается числом внешних орбиталей.

Полярность связи зависит от разницы в значениях электроотрицательностей атомов. От нее зависит равномерность распределения электронов между ядрами атомов. Ковалентная связь по данному признаку может быть полярной или неполярной.

  • Если общая электронная пара в равной степени принадлежит каждому из атомов и расположена от их ядер на одинаковом расстоянии, то ковалентная связь является неполярной.
  • Если же общая пара электронов смещается к ядру одного из атомов, то образуется ковалентная полярная химическая связь.

Поляризуемость выражается смещением электронов связи под действием внешнего электрического поля, которое может принадлежать другой частице, соседним связям в той же молекуле или исходить от внешних источников электромагнитных полей. Так, ковалентная связь под их влиянием может менять свою полярность.

Под гибридизацией орбиталей понимают изменение их форм при осуществлении химической связи. Это необходимо для достижения наиболее эффективного их перекрывания. Существуют следующие виды гибридизации:

  • sp 3 . Одна s- и три p-орбитали образуют четыре "гибридные" орбитали одинаковой формы. Внешне напоминает тетраэдр с углом между осями 109°.
  • sp 2 . Одна s- и две p-орбитали образуют плоский треугольник с углом между осями 120°.
  • sp. Одна s- и одна p-орбиталь образуют две "гибридные" орбитали с углом между их осями 180°.

Особенностью строения атомов металлов является довольно большой радиус и наличие небольшого количества электронов на внешних орбиталях. Вследствие этого в таких химических элементах связь ядра и валентных электронов относительно слаба и легко разрывается.

Металлической связью называют такое взаимодействие между атомами-ионами металлов, которое осуществляется с помощью делокализованных электронов.

В частицах металла валентные электроны могут легко покидать внешние орбитали, как, впрочем, и занимать вакантные места на них. Таким образом, в разные моменты времени одна и та же частица может быть атомом и ионом. Оторвавшиеся от них электроны свободно перемещаются по всему объему кристаллической решетки и осуществляют химическую связь.

Этот тип связи имеет сходства с ионной и ковалентной. Так же как и для ионной, для существования металлической связи необходимы ионы. Но если для осуществления электростатического взаимодействия в первом случае нужны катионы и анионы, то во втором роль отрицательно заряженных частиц играют электроны. Если сравнивать металлическую связь с ковалентной, то для образования обеих необходимы общие электроны. Однако, в отличие от полярной химической связи, они локализованы не между двумя атомами, а принадлежат всем частицам металла в кристаллической решетке.

Металлической связью обусловлены особенные свойства практически всех металлов:

  • пластичность, присутствует благодаря возможности смещения слоев атомов в кристаллической решетке, удерживаемых электронным газом;
  • металлический блеск, который наблюдается из-за отражения световых лучей от электронов (в порошкообразном состоянии нет кристаллической решетки и, значит, перемещающихся по ней электронов);
  • электропроводность, которая осуществляется потоком заряженных частиц, а в данном случае мелкие электроны свободно перемещаются среди крупных ионов металла;
  • теплопроводность, наблюдается благодаря способности электронов переносить теплоту.

Этот тип химической связи иногда называют промежуточной между ковалентной и межмолекулярным взаимодействием. Если атом водорода имеет связь с одним из сильно электроотрицательных элементов (таких как фосфор, кислород, хлор, азот), то он способен образовывать дополнительную связь, называемую водородной.

Она гораздо слабее всех рассмотренных выше типов связей (энергия не более 40 кДж/моль), но пренебрегать ею нельзя. Именно поэтому водородная химическая связь на схеме выглядит в виде пунктирной линии.

Возникновение водородной связи возможно благодаря донорно-акцепторному электростатическому взаимодействию одновременно. Большая разница в значениях электроотрицательности приводит к появлению избыточной электронной плотности на атомах О, N, F и других, а также к ее недостатку на атоме водорода. В том случае если между такими атомами нет существующей химической связи, при их достаточно близком расположении активизируются силы притяжения. При этом протон является акцептором электронной пары, а второй атом - донором.

Водородная связь может возникать как между соседними молекулами, например, воды, карбоновых кислот, спиртов, аммиака, так и внутри молекулы, например, салициловой кислоты.

Наличием водородной связи между молекулами воды объясняется ряд ее уникальных физических свойств:

  • Значения ее теплоемкости, диэлектрической проницаемости, температур кипения и плавления в соответствии с расчетами должны быть значительно меньше реальных, что объясняется связанностью молекул и необходимостью затрачивать энергию на разрыв межмолекулярных водородных связей.
  • В отличие от других веществ, при понижении температуры объем воды увеличивается. Это происходит благодаря тому, что молекулы занимают определенное положение в кристаллической структуре льда и отдаляются друг от друга на длину водородной связи.

Особую роль эта связь играет для живых организмов, поскольку ее наличием в молекулах белков обуславливается их особая структура, а значит, и свойства. Кроме того, нуклеиновые кислоты, составляя двойную спираль ДНК, также связаны именно водородными связями.

Связи в кристаллах

Подавляющее большинство твердых тел имеет кристаллическую решетку - особое взаимное расположение образующих их частиц. При этом соблюдается трехмерная периодичность, а в узлах располагаются атомы, молекулы или ионы, которые соединены воображаемыми линиями. В зависимости от характера этих частиц и связей между ними все кристаллические структуры делят на атомные, молекулярные, ионные и металлические.

В узлах ионной кристаллической решетки находятся катионы и анионы. Причем каждый из них окружен строго определенным числом ионов только с противоположным зарядом. Типичный пример - хлорид натрия (NaCl). Для них обычны высокие температуры плавления и твердость, так как для их разрушения требуется много энергии.

В узлах молекулярной кристаллической решетки расположены молекулы веществ, образованные ковалентной связью (например, I 2). Связаны они друг с другом слабым ван-дер-ваальсовым взаимодействием, а следовательно, такую структуру легко разрушить. Такие соединения имеют низкие температуры кипения и плавления.

Атомную кристаллическую решетку образуют атомы химических элементов, обладающих высокими значениями валентности. Связаны они прочными ковалентными связями, а значит, вещества отличаются высокими температурами кипения, плавления и большой твердостью. Пример - алмаз.

Таким образом, все типы связей, имеющихся в химических веществах, имеют свои особенности, которыми объясняются тонкости взаимодействия частиц в молекулах и веществах. От них зависят свойства соединений. Ими обуславливаются все процессы, происходящие в окружающей среде.

БК Леон является ведущим онлайн-букмекером на гемблинговом рынке. Компания повышенное внимание уделяет бесперебойной работе сервиса. Также постоянно совершенствуется функционал портала. Для удобства пользователей создано зеркало Леон.

Перейти на зеркало

Что такое зеркало Леон.

Для получения доступа к официальному порталу БК Leon, необходимо воспользоваться зеркалом. Пользователю рабочее зеркало предоставляет множество преимуществ таких, как:

  • разнообразная линейка спортивных мероприятий, которые имеют высокие коэффициенты;
  • предоставление возможности игры в режиме Live, смотреть матчи будет интересным занятием;
  • подробный материал относительно проведенных соревнований;
  • удобный интерфейс, с которым быстро разберется даже неопытный пользователь.

Рабочее зеркало представляет собой копию официального портала. Он имеет идентичную функциональность и синхронную базу данных. За счет этого данные учетной записи не меняются. Разработчиками предусмотрена возможность блокировки рабочего зеркала, на такой случай предоставляется иное. Данные точные копии рассылаются и контролируются сотрудниками БК Леон. Если воспользоваться функционирующим зеркалом, то можно получить доступ к официальному порталу БК Леон.

Пользователю не составит трудностей найти зеркало, так как их список подлежит обновлению. При закрытом доступе от посетителя сайта требуется выполнить установку приложения Леон для мобильного телефона на компьютер. Также нужно поменять IP на иную страну за счет VPN. Для изменения местоположения пользователя или провайдера нужно воспользоваться TOP-браузером.

Разработчики предусмотрели различные возможности пользования зеркалом. Для этого с правой стороны сайта имеется надпись “Доступ к сайту”, зеленая кнопка “Обход блокировок” позволяет игроку зайти в подменю и добавить универсальную закладку в браузер.

Также удобство пользователю предоставляет мобильное приложение. Если необходимо узнать о новом адресе зеркала портала, можно позвонить по бесплатному телефону. Получать доступ к зеркалу позволяет канал @leonbets_official на Telegram . Приложение Leonacsess для Windows позволяет всегда получить доступ к сайту. Данные способы дают возможность получить игроку доступ к рабочему зеркалу.

Почему заблокировали основной сайт Леон

Это происходит вследствие действий службы Роскомнадзора. Это связано с отсутствием лицензии на ведение букмекерской деятельности. Синий Leon не получил лицензию, чтобы игрок не платил с выигрыша 13%.

Как зарегистрироваться на зеркале Леонбетс

Зарегистрироваться на этом сайте значительно проще, чем официально. Пользователю не требуется регистрироваться на двух порталах, что занимает до двух дней. Если отдать предпочтение рабочему зеркалу, то данная процедура будет максимально простой.

Для этого пользователю понадобится только заполнить данные относительно Ф. И. О., контакты. Также необходимо определиться с валютой, указать дату рождения и домашний адрес. Также нужно подписаться на рассылку сообщений. Это позволит оперативно получать информацию от букмекеров. Зарегистрированный пользователь получает возможность иметь доступ к личному кабинету, что позволяет произвести ставку на матчи, мероприятия. При возникновении сложностей можно обратиться в службу технической поддержки.

Любое взаимодействие между атомами возможно лишь при наличии химической связи. Такая связь является причиной образования устойчивой многоатомной системы - молекулярного иона, молекулы, кристаллической решетки. Прочная химическая связь требует много энергии для разрыва, поэтому она и является базовой величиной для измерения прочности связи.

Условия образования химической связи

Образование химической связи всегда сопровождается выделением энергии. Этот процесс происходит за счет уменьшения потенциальной энергии системы взаимодействующих частиц - молекул, ионов, атомов. Потенциальная энергия образовавшейся системы взаимодействующих элементов всегда меньше энергии несвязанных исходящих частиц. Таким образом, основанием для возникновения химической связи в системе является спад потенциальной энергии ее элементов.

Природа химического взаимодействия

Химическая связь - это следствие взаимодействия электромагнитных полей, возникающих вокруг электронов и ядер атомов тех веществ, которые принимают участие в образовании новой молекулы или кристалла. После открытия теории строения атома природа этого взаимодействия стала более доступной для изучения.

Впервые идея об электрической природе химической связи возникла у английского физика Г. Дэви, который предположил, что молекулы образуются по причине электрического притяжения разноименно заряженных частиц. Данная идея заинтересовала шведского химика и естествоиспытателя И.Я. Берцеллиуса, который разработал электрохимическую теорию возникновения химической связи.

Первая теория, объяснявшая процессы химического взаимодействия веществ, была несовершенной, и со временем от нее пришлось отказаться.

Теория Бутлерова

Более успешная попытка объяснить природу химической связи веществ была предпринята русским ученым А.М.Бутлеровым. В основу своей теории этот ученый положил такие предположения:

  • Атомы в соединенном состоянии связаны друг с другом в определенном порядке. Изменение этого порядка служит причиной образования нового вещества.
  • Атомы связываются между собой по законам валентности.
  • Свойства вещества зависят от порядка соединения атомов в молекуле вещества. Иной порядок расположения становится причиной изменения химических свойств вещества.
  • Атомы, связанные между собой, наиболее сильно влияют друг на друга.

Теория Бутлерова объясняла свойства химических веществ не только их составом, но и порядком расположения атомов. Такой внутренний порядок А.М. Бутлеров назвал «химическим строением».

Теория русского ученого позволила навести порядок в классификации веществ и предоставила возможность определять строение молекул по их химическим свойствам. Также теория дала ответ на вопрос: почему молекулы, содержащие одинаковое количество атомов, имеют разные химические свойства.

Предпосылки создания теорий химической связи

В своей теории химического строения Бутлеров не касался вопроса о том, что такое химическая связь. Для этого тогда было слишком мало данных о внутреннем строении вещества. Лишь после открытия планетарной модели атома американский ученый Льюис принялся разрабатывать гипотезу о том, что химическая связь возникает посредством образования электронной пары, которая одновременно принадлежит двум атомам. Впоследствии эта идея стала фундаментом для разработки теории ковалентной связи.

Ковалентная химическая связь

Устойчивое химическое соединение может быть образовано при перекрытии электронных облаков двух соседних атомов. Результатом такого взаимного пересечения становится возрастающая электронная плотность в межъядерном пространстве. Ядра атомов, как известно, заряжены положительно, и поэтому стараются как можно ближе притянуться к отрицательно заряженному электронному облаку. Это притяжение значительно сильнее, чем силы отталкивания между двумя положительно заряженными ядрами, поэтому такая связь является устойчивой.

Впервые расчеты химической связи были выполнены химиками Гейтлером и Лондоном. Ими была рассмотрена связь между двумя атомами водорода. Простейшее наглядное представление о ней может выглядеть следующим образом:

Как видно, электронная пара занимает квантовое место в обоих атомах водорода. Такое двуцентровое размещение электронов получило название «ковалентная химическая связь». Ковалентная связь типична для молекул простых веществ и их соединений неметаллов. Вещества, созданные в результате ковалентной связи, обычно не проводят электрический ток или же являются полупроводниками.

Ионная связь

Химическая связь ионного типа возникает при взаимном электрическом притяжении двух противоположно заряженных ионов. Ионы могут быть простыми, состоящими из одного атома вещества. В соединениях подобного типа простые ионы - чаще всего положительно заряженные атомы металлов 1,2 группы, потерявшие свой электрон. Образование отрицательных ионов присуще атомам типичных неметаллов и оснований их кислот. Поэтому среди типичных ионных соединений имеется множество галогенидов щелочных металлов, например CsF, NaCl, и других.

В отличие от ковалентной связи, ион не обладает насыщенностью: к иону или группе ионов может присоединиться различное число противоположно заряженных ионов. Количество присоединенных частиц ограничивается лишь линейными размерами взаимодействующих ионов, а также условием, при котором силы притяжения противоположно заряженных ионов должны быть больше, чем силы отталкивания одинаково заряженных частиц, участвующих в соединении ионного типа.

Водородная связь

Еще до создания теории химического строения опытным путем было замечено, что соединения водорода с различными неметаллами обладают несколько необычными свойствами. Например, температура кипения фтороводорода и воды значительно выше, чем это можно было ожидать.

Эти и другие особенности водородных соединений можно объяснить способностью атома Н + образовывать еще одну химическую связь. Такой тип соединения получил название «водородная связь». Причины возникновения водородной связи кроются в свойствах электростатических сил. Например, в молекуле фтороводорода общее электронное облако настолько смещено в сторону фтора, что пространство вокруг атома этого вещества насыщенно отрицательным электрическим полем. Вокруг атома водорода, лишенного своего единственного электрона, поле значительно слабее, и имеет положительных заряд. В результате возникает дополнительная взаимосвязь между положительными полями электронных облаков Н + и отрицательными F - .

Химическая связь металлов

Атомы всех металлов расположены в пространстве определенным образом. Порядок расположения атомов металлов называется кристаллической решеткой. При этом электроны различных атомов слабо взаимодействуют друг с другом, образуя общее электронное облако. Такой вид взаимодействия между атомами и электронами получил название «металлическая связь».

Именно свободным передвижением электронов в металлах можно объяснить физические свойства металлических веществ: электропроводность, теплопроводность, прочность, плавкость и другие.

170009 0

Каждый атом обладает некоторым числом электронов.

Вступая в химические реакции, атомы отдают, приобретают, либо обобществляют электроны, достигая наиболее устойчивой электронной конфигурации. Наиболее устойчивой оказывается конфигурация с наиболее низкой энергией (как в атомах благородных газов). Эта закономерность называется "правилом октета" (рис. 1).

Рис. 1.

Это правило применимо ко всем типам связей . Электронные связи между атомами позволяют им формировать устойчивые структуры, от простейших кристаллов до сложных биомолекул, образующих, в конечном счете, живые системы. Они отличаются от кристаллов непрерывным обменом веществ. При этом многие химические реакции протекают по механизмам электронного переноса , которые играют важнейшую роль в энергетических процессах в организме.

Химическая связь - это сила, удерживающая вместе два или несколько атомов, ионов, молекул или любую их комбинацию .

Природа химической связи универсальна: это электростатическая сила притяжения между отрицательно заряженными электронами и положительно заряженными ядрами, определяемая конфигурацией электронов внешней оболочки атомов. Способность атома образовывать химические связи называется валентностью , или степенью окисления . С валентностью связано понятие о валентных электронах - электронах, образующих химические связи, то есть находящихся на наиболее высокоэнергетических орбиталях. Соответственно, внешнюю оболочку атома, содержащую эти орбитали, называют валентной оболочкой . В настоящее время недостаточно указать наличие химической связи, а необходимо уточнить ее тип: ионная, ковалентная, диполь-дипольная, металлическая.

Первый тип связи - ионная связь

В соответствии с электронной теорией валентности Льюиса и Косселя, атомы могут достичь устойчивой электронной конфигурации двумя способами: во-первых, теряя электроны, превращаясь в катионы , во-вторых, приобретая их, превращаясь в анионы . В результате электронного переноса благодаря электростатической силе притяжения между ионами с зарядами противоположного знака образуется химическая связь, названная Косселем «электровалентной » (теперь ее называют ионной ).

В этом случае анионы и катионы образуют устойчивую электронную конфигурацию с заполненной внешней электронной оболочкой. Типичные ионные связи образуются из катионов Т и II групп периодической системы и анионов неметаллических элементов VI и VII групп (16 и 17 подгрупп - соответственно, халькогенов и галогенов ). Связи у ионных соединений ненасыщенные и ненаправленные, поэтому возможность электростатического взаимодействия с другими ионами у них сохраняется. На рис. 2 и 3 показаны примеры ионных связей, соответствующих модели электронного переноса Косселя.

Рис. 2.

Рис. 3. Ионная связь в молекуле поваренной соли (NaCl)

Здесь уместно напомнить о некоторых свойствах, объясняющих поведение веществ в природе, в частности, рассмотреть представление о кислотах и основаниях .

Водные растворы всех этих веществ являются электролитами. Они по-разному изменяют окраску индикаторов . Механизм действия индикаторов был открыт Ф.В. Оствальдом. Он показал, что индикаторы представляют собой слабые кислоты или основания, окраска которых в недиссоциированном и диссоциированном состояниях различается.

Основания способны нейтрализовать кислоты. Не все основания растворимы в воде (например, нерастворимы некоторые органические соединения, не содержащие ‑ ОН-групп, в частности, триэтиламин N(С 2 Н 5) 3) ; растворимые основания называют щелочами .

Водные растворы кислот вступают в характерные реакции:

а) с оксидами металлов - с образованием соли и воды;

б) с металлами - с образованием соли и водорода;

в) с карбонатами - с образованием соли, СO 2 и Н 2 O .

Свойства кислот и оснований описывают несколько теорий. В соответствие с теорией С.А. Аррениуса, кислота представляет собой вещество, диссоциирующее с образованием ионов Н + , тогда как основание образует ионы ОН ‑ . Эта теория не учитывает существования органических оснований, не имеющих гидроксильных групп.

В соответствие с протонной теорией Бренстеда и Лоури, кислота представляет собой вещество, содержащее молекулы или ионы, отдающие протоны (доноры протонов), а основание - вещество, состоящее из молекул или ионов, принимающие протоны (акцепторы протонов). Отметим, что в водных растворах ионы водорода существуют в гидратированной форме, то есть в виде ионов гидроксония H 3 O + . Эта теория описывает реакции не только с водой и гидроксидными ионами, но и осуществляющиеся в отсутствие растворителя или с неводным растворителем.

Например, в реакции между аммиаком NH 3 (слабым основанием) и хлороводородом в газовой фазе образуется твердый хлорид аммония, причем в равновесной смеси двух веществ всегда присутствуют 4 частицы, две из которых - кислоты, а две другие - основания:

Эта равновесная смесь состоит из двух сопряженных пар кислот и оснований:

1) NH 4 + и NH 3

2) HCl и Сl

Здесь в каждой сопряженной паре кислота и основание различаются на один протон. Каждая кислота имеет сопряженное с ней основание. Сильной кислоте соответствует слабое сопряженное основание, а слабой кислоте - сильное сопряженное основание.

Теория Бренстеда-Лоури позволяет объяснить уникальность роли воды для жизнедеятельности биосферы. Вода, в зависимости от взаимодействующего с ней вещества, может проявлять свойства или кислоты, или основания. Например, в реакциях с водными растворами уксусной кислоты вода является основанием, а с водными растворами аммиака - кислотой.

1) СН 3 СООН + Н 2 O Н 3 O + + СН 3 СОО ‑ . Здесь молекула уксусной кислоты донирует протон молекуле воды;

2) NH 3 + Н 2 O NH 4 + + ОН ‑ . Здесь молекула аммиака акцептирует протон от молекулы воды.

Таким образом, вода может образовывать две сопряженные пары:

1) Н 2 O (кислота) и ОН ‑ (сопряженное основание)

2) Н 3 О + (кислота) и Н 2 O (сопряженное основание).

В первом случае вода донирует протон, а во втором - акцептирует его.

Такое свойство называется амфипротонностью . Вещества, способные вступать в реакции в качестве и кислот, и оснований, называются амфотерными . В живой природе такие вещества встречаются часто. Например, аминокислоты способны образовывать соли и с кислотами, и с основаниями. Поэтому пептиды легко образуют координационные соединения с присутствующими ионами металлов.

Таким образом, характерное свойство ионной связи - полное перемещение нары связывающих электронов к одному из ядер. Это означает, что между ионами существует область, где электронная плотность почти нулевая.

Второй тип связи - ковалентная связь

Атомы могут образовывать устойчивые электронные конфигурации путем обобществления электронов.

Такая связь образуется, когда пара электронов обобществляется по одному от каждого атома. В таком случае обобществленные электроны связи распределены между атомами поровну. Примерами ковалентной связи можно назвать гомоядерные двухатомные молекулы Н 2 , N 2 , F 2 . Этот же тип связи имеется у аллотропов O 2 и озона O 3 и у многоатомной молекулы S 8 , а также у гетероядерных молекул хлороводорода НСl , углекислого газа СO 2 , метана СH 4 , этанола С 2 Н 5 ОН , гексафторида серы SF 6 , ацетилена С 2 Н 2 . У всех этих молекул электроны одинаково общие, а их связи насыщенные и направлены одинаково (рис. 4).

Для биологов важно, что у двойной и тройной связей ковалентные радиусы атомов по сравнению с одинарной связью уменьшены.

Рис. 4. Ковалентная связь в молекуле Сl 2 .

Ионный и ковалентный типы связей - это два предельных случая множества существующих типов химических связей, причем на практике большинство связей промежуточные.

Соединения двух элементов, расположенных в противоположных концах одного или разных периодов системы Менделеева, преимущественно образуют ионные связи. По мере сближения элементов в пределах периода ионный характер их соединений уменьшается, а ковалентный - увеличивается. Например, галогениды и оксиды элементов левой части периодической таблицы образуют преимущественно ионные связи (NaCl, AgBr, BaSO 4 , CaCO 3 , KNO 3 , CaO, NaOH ), а такие же соединения элементов правой части таблицы - ковалентные (Н 2 O, СO 2 , NH 3 , NO 2 , СН 4 , фенол C 6 H 5 OH , глюкоза С 6 H 12 О 6 , этанол С 2 Н 5 ОН ).

Ковалентная связь, в свою очередь, имеет еще одну модификацию.

У многоатомных ионов и в сложных биологических молекулах оба электрона могут происходить только из одного атома. Он называется донором электронной пары. Атом, обобществляющий с донором эту пару электронов, называется акцептором электронной пары. Такая разновидность ковалентной связи названа координационной (донорно-акцепторной , или дативной ) связью (рис. 5). Этот тип связи наиболее важен для биологии и медицины, поскольку химия наиболее важных для метаболизма d-элементов в значительной степени описывается координационными связями.

Pиc. 5.

Как правило, в комплексном соединении атом металла выступает акцептором электронной пары; наоборот, при ионных и ковалентных связях атом металла является донором электрона.

Суть ковалентной связи и ее разновидности - координационной связи - можно прояснить с помощью еще одной теории кислот и оснований, предложенной ГН. Льюисом. Он несколько расширил смысловое понятие терминов «кислота» и «основание» по теории Бренстеда-Лоури. Теория Льюиса объясняет природу образования комплексных ионов и участие веществ в реакциях нуклеофильного замещения, то есть в образовании КС.

Согласно Льюису, кислота - это вещество, способное образовывать ковалентную связь путем акцептирования электронной пары от основания. Льюисовым основанием названо вещество, обладающее неподеленной электронной парой, которое, донируя электроны, образует ковалентную связь с Льюисовой кислотой.

То есть теория Льюиса расширяет круг кислотно-основных реакций также на реакции, в которых протоны не участвуют вовсе. Причем сам протон, по этой теории, также является кислотой, поскольку способен акцептировать электронную пару.

Следовательно, согласно этой теории, катионы являются Льюисовыми кислотами, а анионы - Льюисовыми основаниями. Примером могут служить следующие реакции:

Выше отмечено, что подразделение веществ на ионные и ковалентные относительное, поскольку полного перехода электрона от атомов металла к акцепторным атомам в ковалентных молекулах не происходит. В соединениях с ионной связью каждый ион находится в электрическом поле ионов противоположного знака, поэтому они взаимно поляризуются, а их оболочки деформируются.

Поляризуемость определяется электронной структурой, зарядом и размерами иона; у анионов она выше, чем у катионов. Наибольшая поляризуемость среди катионов - у катионов большего заряда и меньшего размера, например, у Hg 2+ , Cd 2+ , Pb 2+ , Аl 3+ , Тl 3+ . Сильным поляризующим действием обладает Н + . Поскольку влияние поляризации ионов двустороннее, она значительно изменяет свойства образуемых ими соединений.

Третий тип связи - диполь-дипольная связь

Кроме перечисленных типов связи, различают еще диполь-дипольные межмолекулярные взаимодействия, называемые также вандерваалъсовыми .

Сила этих взаимодействий зависит от природы молекул.

Выделяют взаимодействия трех типов: постоянный диполь - постоянный диполь (диполь-дипольное притяжение); постоянный диполь - индуцированный диполь (индукционное притяжение); мгновенный диполь - индуцированный диполь (дисперсионное притяжение, или лондоновские силы; рис. 6).

Рис. 6.

Диполь-дипольным моментом обладают только молекулы с полярными ковалентными связями (HCl, NH 3 , SO 2 , Н 2 O, C 6 H 5 Cl ), причем сила связи составляет 1-2 дебая (1Д = 3,338 × 10 ‑30 кулон-метра - Кл × м).

В биохимии выделяют еще один тип связи - водородную связь, являющуюся предельным случаем диполь-дипольного притяжения. Эта связь образована притяжением между атомом водорода и электроотрицательным атомом небольшого размера, чаще всего - кислородом, фтором и азотом. С крупными атомами, обладающими аналогичной электроотрицательностью (например, с хлором и серой), водородная связь оказывается значительно более слабой. Атом водорода отличается одной существенной особенностью: при оттягивании связывающих электронов его ядро - протон - оголяется и перестает экранироваться электронами.

Поэтому атом превращается в крупный диполь.

Водородная связь, в отличие от вандерваальсовой, образуется не только при межмолекулярных взаимодействиях, но и внутри одной молекулы - внутримолекулярная водородная связь. Водородные связи играют в биохимии важную роль, например, для стабилизации структуры белков в виде а-спирали, или для образования двойной спирали ДНК (рис. 7).

Рис.7.

Водородная и вандерваальсовая связи значительно слабее, чем ионная, ковалентная и координационная. Энергия межмолекулярных связей указана в табл. 1.

Таблица 1. Энергия межмолекулярных сил

Примечание : Степень межмолекулярных взаимодействий отражают показатели энтальпии плавления и испарения (кипения). Ионным соединениям требуется для разделения ионов значительно больше энергии, чем для разделения молекул. Энтальпии плавления ионных соединений значительно выше, чем молекулярных соединений.

Четвертый тип связи - металлическая связь

Наконец, имеется еще один тип межмолекулярных связей - металлический : связь положительных ионов решетки металлов со свободными электронами. В биологических объектах этот тип связи не встречается.

Из краткого обзора типов связей выясняется одна деталь: важным параметром атома или иона металла - донора электронов, а также атома - акцептоpa электронов является его размер .

Не вдаваясь в детали, отметим, что ковалентные радиусы атомов, ионные радиусы металлов и вандерваальсовы радиусы взаимодействующих молекул увеличиваются по мере возрастания их порядкового номера в группах периодической системы. При этом значения радиусов ионов - наименьшие, а вандерваальсовых радиусов - наибольшие. Как правило, при движении вниз по группе радиусы всех элементов увеличиваются, причем как ковалентные, так и вандерваальсовы.

Наибольшее значение для биологов и медиков имеют координационные (донорно-акцепторные ) связи, рассматриваемые координационной химией.

Медицинская бионеорганика. Г.К. Барашков

    определение химической связи;

    типы химических связей;

    метод валентных связей;

    основные характеристики ковалентной связи;

    механизмы образования ковалентной связи;

    комплексные соединения;

    метод молекулярных орбиталей;

    межмолекулярные взаимодействия.

ОПРЕДЕЛЕНИЕ ХИМИЧЕСКОЙ СВЯЗИ

Химической связью называют взаимодействие между атомами, приводящее к образованию молекул или ионов и прочному удерживанию атомов друг около друга.

Химическая связь имеет электронную природу, т. е. осуществляется за счёт взаимодействия валентных электронов. В зависимости от распределения валентных электронов в молекуле, различают следующие виды связей: ионная, ковалентная, металлическая и др. Ионную связь можно рассматривать как предельный случай ковалентной связи между атомами, резко отличающимися по природе.

ТИПЫ ХИМИЧЕСКОЙ СВЯЗИ

Ионная связь.

Основные положения современной теории ионной связи.

    Ионная связь образуется при взаимодействии элементов, резко отличающихся друг от друга по свойствам, т. е. между металлами и неметаллами.

    Образование химической связи объясняется стремлением атомов к достижению устойчивой восьмиэлектронной внешней оболочки (s 2 p 6).

Ca: 1s 2 2s 2 p 6 3s 2 p 6 4s 2

Ca 2+ : 1s 2 2s 2 p 6 3s 2 p 6

Cl: 1s 2 2s 2 p 6 3s 2 p 5

Cl – : 1s 2 2s 2 p 6 3s 2 p 6

    Образовавшиеся разноименно заряженные ионы удерживаются друг около друга за счёт электростатического притяжения.

    Ионная связь не направленная.

    Чисто ионной связи не существует. Так как энергия ионизации больше энергии сродства к электрону, то полного перехода электронов не происходит даже в случае пары атомов с большой разницей электроотрицательностей. Поэтому можно говорить о доле ионности связи. Наибольшая ионность связи имеет место во фторидах и хлоридах s-элементов. Так, в кристаллах RbCl, KCl, NaCl и NaF она равна 99, 98, 90 и 97% соответственно.

Ковалентная связь.

Основные положения современной теории ковалентной связи.

    Ковалентная связь образуется между элементами, сходными по свойствам, то есть, неметаллами.

    Каждый элемент предоставляет для образования связей 1 электрон, причём спины электронов должны быть антипараллельными.

    Если ковалентная связь образована атомами одного и того же элемента, то эта связь не полярная, т. е. общая электронная пара не смещена ни к одному из атомов. Если же ковалентная связь образована двумя разными атомам, то общая электронная пара смещена к наиболее электроотрицательному атому, это полярная ковалентная связь .

    При образовании ковалентной связи происходит перекрывание электронных облаков взаимодействующих атомов, в результате, в пространстве между атомами возникает зона повышенной электронной плотности, притягивающая к себе положительно заряженные ядра взаимодействующих атомов, и удерживающая их друг около друга. Вследствие этого снижается энергия системы (рис. 14). Однако при очень сильном сближении атомов возрастает отталкивание ядер. Поэтому имеется оптимальное расстояние между ядрами (длина связи , l св), при котором система имеет минимальную энергию. При таком состоянии выделяется энергия, называемая энергией связи – Е св.

Рис. 14. Зависимость энергии систем из двух атомов водорода с параллельными (1) и антипараллельными (2) спинами от расстояния между ядрами (Е – энергия системы, Е св – энергия связи, r – расстояние между ядрами, l – длина связи).

Для описания ковалентной связи используют 2 метода: метод валентных связей (ВС) и метод молекулярных орбиталей (ММО).