Что такое буферная система. Белковая буферная система. Биологическое значение. главные буферные системы в организме человека

Кровь играет определяющую роль в поддержании кислотно-щелочного равновесия, изменение которого может привести к развитию патологических состояний или гибели организма. Поэтому в организме существуют специальные системы, которые препятствуют изменению рН крови и других биологических жидкостей при образовании кислых и щелочных продуктов или при большом поступлении воды. Такую роль выполняют отдельные физиологические системы (дыхательная, выделительная), а также буферные системы. Последние очень быстро (в течение нескольких секунд) реагируют на изменение концентрации Н + и ОН - в водных средах и являются срочными регуляторами кислотно-основного состояния в тканях организма.

Буферные системы - это смесь слабой кислоты и её растворимой соли, двух солей или белков, которые способны препятствовать изменению рН водных сред. Действие буферных систем направлено на связывание избытка Н + или ОН - в среде и поддержание постоянства рН среды. При действии буферной системы образуются слабодиссоциируемые вещества или вода. К основным буферным системам крови относятся бикарбонатная, белковая (гемоглобиновая) и фосфатная. Имеются также ацетатная и аммонийная буферные системы.

Бикарбонатная буферная система - мощная и самая управляемая система крови и внеклеточной жидкости. На её долю приходится около 10% всей буферной ёмкости крови. Бикарбонатная система представляет собой сопряжённую кислотно-основную пару, состоящую из молекулы угольной кислоты Н 2 СО 3 , выполняющую роль донора протона, и бикарбонат-иона НСО 3 - , выполняющего роль акцептора протона:

СО 2 + Н 2 О ↔ Н 2 СО 3 ↔ Н + + НСО 3 -

Истинная концентрация недиссоциированных молекул Н 2 СО 3 в крови незначительна и находится в прямой зависимости от концентрации растворённого СО 2 . При нормальном значении рН крови (7,4) концентрация ионов бикарбоната НСО 3 - в плазме крови превышает концентрацию СО 2 примерно в 20 раз. Бикарбонатная буферная система функционирует как эффективный регулятор в области рН = 7,4. Механизм действия этой системы заключается в том, что при выделении в кровь относительно больших количеств кислых продуктов протоны Н + взаимодействуют с ионами бикарбоната НСО 3 - , что приводит к образованию слабодиссоциируемой Н 2 СО 3 .

Последующее снижение концентрации Н 2 СО 3 достигается в результате ускоренного выделения СО 2 через лёгкие в результате их гипервентиляции. Если в крови увеличивается количество оснований, то они, взаимодействуя со слабой угольной кислотой , образуют ионы бикарбоната и воду. При этом не происходит сколько-нибудь заметных сдвигов в величине рН. Кроме того, для сохранения нормального соотношения между компонентами буферной системы в этом случае подключаются физиологические механизмы регуляции кислотно-основного равновесия: происходит задержка в плазме крови некоторого количества СО 2 в результате гиповентиляции лёгких. Бикарбонатная система тесно связана с гемоглобиновой системой.


Фосфатная буферная система представляет собой сопряжённую кислотно-основную пару, состоящую из иона Н 2 РО 4 - (донор протонов, выполняет роль кислоты) и иона НРО 4 2- (акцептор протонов, выполняет роль соли). Фосфатная буферная система составляет лишь 1% от буерной ёмкости крови. В других тканях эта система является одной из основных. Фосфатная буферная система способна оказывать влияние при изменениях рН в интервале от 6,1 до 7,7 и может обеспечивать определённую ёмкость внутриклеточной жидкости, величина рН которой в пределах 6,9-7,4. В крови максимальная ёмкость фосфатного буфера проявляется вблизи значения 7,2. Органические фосфаты также обладают буферными свойствами, но мощность их слабее, чем неорганического фосфатного буфера.

Белковая буферная система имеет меньшее значение для поддержания кислотно-основного равновесия в плазме крови, чем другие буферные системы. Белки образуют буферную систему благодаря наличию кислотно-основных групп в молекуле белков: белок-Н + (кислота, донор протонов) и белок (сопряжённое основание, акцептор протонов). Белковая буферная система плазмы крови эффективна в области значений рН 7,2-7,4.

Гемоглобиновая буферная система - самая мощная буферная система крови, на её долю приходится 75% от всей буферной. Участие гемоглобина в регуляции рН крови связано с его ролью в транспорте кислорода и углекислого газа. При насыщении кислородом гемоглобин становится более сильной кислотой (ННbО 2). Гемоглобин, отдавая кислород, превращается в очень слабую органическую кислоту (ННb).

Гемоглобиновая буферная система состоит из неионизированного гемоглобина ННb (слабая органическая кислота, донор протонов) и калиевой соли гемоглобина КНb (сопряжённое основание, акцептор протонов). Точно так же может быть рассмотрена оксигемоглобиновая буферная система. Система гемоглобина и система оксигемоглобина являются взаимопревращающимися системами и существуют как единое целое. Буферные свойства гемоглобина обусловлены возможностью взаимодействия кисло реагирующих соединений с калиевой солью гемоглобина:

КНb + Н 2 СО 3 => КНСО 3 + ННb.

Это обеспечивает поддержание рН крови в пределах физиологически допустимых величин, несмотря на поступление в венозную кровь большого количества СО 2 и других продуктов обмена кислотного характера. Гемоглобин (ННb), попадая в капилляры лёгких, превращается в оксигемоглобин (ННbО 2), что приводит к некоторому подкислению крови, вытеснению части Н 2 СО 3 из бикарбонатов и понижению щелочного резерва крови.

Дыхательная функция крови. Важной функцией крови является её способность переносить кислород к тканям и СО 2 от тканей к лёгким. Веществом, осуществляющим эту функцию, является гемоглобин. Гемоглобин способен поглощать О 2 при сравнительно высоком содержании его в атмосферном воздухе и легко отдавать при понижении парциального давления О 2:

Нb + О 2 ↔ НbО.

Поэтому в легочных капиллярах происходит насыщение крови О 2 , в то время как в тканевых капиллярах, где парциальное давление его резко снижается, наблюдается обратный процесс - отдача кровью кислорода тканям.

Образующийся в тканях при окислительных процессах СО 2 подлежит выведению из организма. Обеспечение такого газообмена осуществляется несколькими системами организма.

Наибольшее значение имеют внешнее, или легочное, дыхание, обеспечивающее направленную диффузию газов через альвеолокапиллярные перегородки в легких и обмен газов между наружным воздухом и кровью; дыхательная функция крови, зависимая от способности плазмы растворять и способности гемоглобина обратимо связывать кислород и углекислый газ; транспортная функция сердечно-сосудистой системы (кровотока), обеспечивающая перенос газов крови от легких к тканям и обратно; функция ферментных систем, обеспечивающая обмен газов между кровью и клетками тканей, т.е. тканевое дыхание.

Диффузия газов крови осуществляется через мембрану клеток по концентрационному градиенту. За счет этого процесса в альвеолах легких в конце вдоха происходит выравнивание парциальных давлений различных газов в альвеолярном воздухе и крови. Обмен с атмосферным воздухом в процессе последующих выдоха и вдоха вновь приводит к различиям концентрации газов в альвеолярном воздухе и в крови, в связи с чем происходит диффузия кислорода в кровь, а углекислого газа из крови.

Большая часть О 2 и СО 2 переносится в форме связи их с гемоглобином в виде молекул HbO 2 и HbCO 2 . Максимальное количество кислорода, связываемое кровью при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови. В норме ее величина колеблется в пределах 16,0-24,0 об.% и зависит от содержания в крови гемоглобина, 1 г которого может связать 1,34 мл кислорода (число Хюфнера).

Связывание кислорода гемоглобином является обратимым процессом, зависимым от напряжения кислорода в крови, а также от других факторов, в частности от рН крови.

СО 2 , образующийся в тканях, переходит в кровь кровеносных капилляров, затем диффундирует внутрь эритроцита, где под влиянием карбоангидразы превращается в угольную кислоту, которая диссоциирует на Н + и НСО 3 - . НСО 3 - частично диффундируют в плазму крови, образуя бикарбонат натрия. Он при поступлении крови в легкие (как и ионы НСО 3 - , содержащиеся в эритроцитах) образует СО 2 , который диффундирует в альвеолы.

Около 80% всего количества СО 2 переносится от тканей к легким в виде бикарбонатов, 10% - в виде свободно растворенной углекислоты и 10% - в виде карбоксигемоглобина. Карбоксигемоглобин диссоциирует в легочных капиллярах на гемоглобин и свободный СО 2 , который удаляется с выдыхаемым воздухом. Освобождению СО 2 из связи с гемоглобином способствует превращение последнего в оксигемоглобин, который, обладая выраженными кислотными свойствами, способен переводить бикарбонаты в угольную кислоту, диссоциирующую с образованием молекул воды и СО 2 .

При недостаточном насыщении крови кислородом развивается гипоксемия , которая сопровождается развитием гипоксии , т.е. недостаточным снабжением тканей кислородом. Тяжелые формы гипоксемии могут вызвать полное прекращение доставки кислорода тканям, тогда развивается аноксия , в этих случаях наступает потеря сознания, которая может закончиться смертью.

Патология газообмена, связанная с нарушением транспорта газов между легкими и клетками организма, наблюдается при уменьшении газовой емкости крови вследствие недостатка или качественных изменений гемоглобина, проявляется в виде анемических гипоксий. При анемиях кислородная емкость крови уменьшается пропорционально снижению концентрации гемоглобина. Снижение концентрации гемоглобина при анемиях ограничивает и транспорт углекислоты от тканей к легким в форме карбоксигемоглобина.

Нарушение транспорта кислорода кровью возникает также при патологии гемоглобина, например при серповидно-клеточной анемии, при инактивации части молекул гемоглобина за счет превращения его в метгемоглобин, например, при отравлении нитратами (метгемоглобинемия), или в карбоксигемоглобин (отравление СО).

Нарушения газообмена вследствие уменьшения объемной скорости кровотоки в капиллярах возникают при сердечной недостаточности, сосудистой недостаточности (в т.ч. при коллапсе, шоке), локальные нарушения - при ангиоспазме и др. В условиях застоя крови концентрация восстановленного гемоглобина возрастает. При сердечной недостаточности этот феномен особенно выражен в капиллярах отдаленных от сердца участков тела, где кровоток наиболее замедлен, что клинически проявляется акроцианозом.

Первичное нарушение газообмена на уровне клеток наблюдается главным образом при воздействии ядов, блокирующих дыхательные ферменты. В результате клетки утрачивают способность утилизировать кислород, и развивается резкая тканевая гипоксия, приводящая к структурной дезорганизации субклеточных и клеточных элементов, вплоть до некроза. Нарушению клеточного дыхания может способствовать витаминная недостаточность, например дефицит витаминов В 2 , РР, являющихся коферментами дыхательных ферментов.

Буферные системы – это соединения, противодействующие резким изменениям концентрации ионов Н + . Любая буферная система - это кислотно-основная пара: слабое основание (анион, А –) и слабая кислота (Н-Анион, H-А). Они минимизируют сдвиги количества ионов Н + за счет их связывания с анионом и включения в плохо диссоциирующее соединение – в слабую кислоту. Поэтому общее количество ионов Н + изменяется не так заметно, как это могло бы быть.

Существует три буферные системы жидкостей организма – бикарбонатная , фосфатная , белковая (включая гемоглобиновую ).Они вступают в действие моментально и через несколько минут их эффект достигает максимума возможного.

Фосфатная буферная система

Фосфатная буферная система составляет около 2% от всей буферной емкости крови и до 50% буферной емкости мочи. Она образована гидрофосфатом (HPO 4 2–) и дигидрофосфатом (H 2 PO 4 –). Дигидрофосфат слабо диссоциирует и ведет себя как слабая кислота, гидрофосфат обладает щелочными свойствами. В норме отношение HРO 4 2– к H 2 РO 4 – равно 4: 1.

При взаимодействии кислот (ионов Н +) с двузамещенным фосфатом (HPO 4 2‑) образуется дигидрофосфат (H 2 PO 4 –):

Удаление ионов H + фосфатным буфером

В результате концентрация ионов Н + понижается.

При поступлении в кровь оснований (избыток ОН – ‑групп) они нейтрализуются поступающими в плазму от H 2 PO 4 – ионами Н + :

Удаление щелочных эквивалентов фосфатным буфером

Роль фосфатного буфера особенно высока во внутриклеточном пространстве и в просвете почечных канальцев. Кислотно-основная реакция мочи зависит только от содержания дигидрофосфата (H2 PO4 – ), т.к. бикарбонат натрия в почечных канальцах реабсорбируется.

Бикарбонатная буферная система

Эта система самая мощная, на ее долю приходится 65% всей буферной мощности крови. Она состоит из бикарбонат-иона (НСО 3 –) и угольной кислоты (Н 2 СО 3). В норме отношение HCO 3 – к H 2 CO 3 равно 20 : 1.

При поступлении в кровь ионов H + (т.е. кислоты) ионы бикарбоната натрия взаимодействуют с ней и образуется угольная кислота:

При работе бикарбонатной системы концентрация водородных ионов понижается, т.к. угольная кислота является очень слабой кислотой и плохо диссоциирует. При этом в крови не происходит параллельного значимого увеличения концентрации НСО 3 – .

Если в кровь поступают вещества с щелочными свойствами, то они реагируют с угольной кислотой и образуют ионы бикарбоната:

Работа бикарбонатного буфера неразрывно связана с дыхательной системой (с вентиляцией легких). В легочных артериолах при снижении плазменной концентрации СО 2 и благодаря присутствию в эритроцитах фермента карбоангидразы угольная кислота быстро расщепляется с образованием CO 2 , удаляемого с выдыхаемым воздухом:

Н 2 СО 3 → Н 2 О + СО 2

Кроме эритроцитов, значительная активность карбоангидразы отмечена в эпителии почечных канальцев, клетках слизистой оболочки желудка, коре надпочечников и клетках печени, в незначительных количествах – в центральной нервной системе, поджелудочной железе и других органах.

Белковая буферная система

Белки плазмы, в первую очередь альбумин , играют роль буфера благодаря своим амфотерным свойствам . Их вклад в буферизацию плазмы крови около 5%.

В кислой среде подавляется диссоциация СООН‑групп аминокислотных радикалов (в аспарагиновой и глутаминовой кислотах), а группы NH 2 (в аргинине и лизине) связывают избыток Н + . При этом белок заряжается положительно.

В щелочной среде усиливается диссоциация COOH‑групп, поступающие в плазму ионы Н + связывают избыток ОН – ‑ионов и pH сохраняется. Белки в данном случае выступают как кислоты и заряжаются отрицательно.

Изменение заряда буферных групп белка при различных рН

Гемоглобиновая буферная система

Высокой мощностью в крови обладает гемоглобиновый буфер , на него приходится до 28% всей буферной емкости крови. В качестве кислой части буфера выступает оксигенированный гемоглобин H‑HbO2 . Он имеет выраженные кислотные свойства и в 80 раз легче отдает ионы водорода, чем восстановленный Н‑Нb , выступающий как основание. Гемоглобиновый буфер можно рассматривать как часть белкового, но его особенностью является работа в теснейшем контакте с бикарбонатной системой .

Изменение кислотности гемоглобина происходит в тканях и в легких, и вызывается связыванием соответственно H + или О 2 . Непосредственный механизм действия буфера заключается в присоединении или отдаче иона H + остатком гистидина в глобиновой части молекулы (эффект Бора).

В тканях более кислый pH в норме является результатом накопления минеральных (угольной, серной, соляной) и органических кислот (молочной). При компенсации pH данным буфером ионы H + присоединяются к пришедшему оксигемоглобину (HbО 2) и превращают его в H‑HbО 2 . Это моментально вызывает отдачу оксигемоглобином кислорода (эффект Бора) и он превращается в восстановленный H‑Hb.

НbO 2 + Н + → → Н-Hb + O 2

В результате снижается количество кислот, в первую очередь Н 2 СО 3 , продуцируются ионы НСО 3 ‑ и тканевое пространство подщелачивается.

В легких после удаления СО 2 (угольной кислоты) происходит защелачивание крови. При этом присоединение О 2 к дезоксигемоглобину H-Hb образует кислоту более сильную, чем угольная. Она отдает свои ионы Н + в среду, предотвращая повышение рН:

Н-Hb + O 2 → → НbO 2 + Н +

Работу гемоглобинового буфера рассматривают неотрывно от бикарбонатного буфера:

Фосфатная буферная система составляет около 1-2% от всей буферной емкости крови и до 50% буферной емкости мочи.

Она образована дигидрофосфатом (NaH2PO4) и гидрофосфатом (Na2HPO4) натрия.

Первое соединение слабо диссоциирует и ведет себя как слабая кислота, второе обладает щелочными свойствами.

В норме отношение HРO42– к H2РO4– равно 4: 1.

При взаимодействии кислот (ионов водорода) с двузамещенным фосфатом натрия (Na2HPO4) натрий вытесняется, образуется натриевая соль дигидрофосфата (H2PO4–). В результате, благодаря связыванию введенной в систему кислоты, концентрация ионов водорода значительно понижается.

HPO42– + Н-Анион > H2PO4– + Анион–

При поступлении оснований избыток ОН– групп нейтрализуется имеющимися в среде Н+, а расход ионов Н+ восполняется повышением диссоциации NaH2PO4.

H2PO4– + Катион-ОН > Катион+ + HPO42– + Н2О

Основное значение фосфатный буфер имеет для регуляции pH интерстициальной жидкости и мочи.

В моче роль его состоит в сбережении бикарбоната натрия за счет дополнительного иона водорода (по сравнению с NaHCO3) в составе выводимого NaH2PO4:

Na2HPO4 + Н2СО3 > NaH2PO4 + NaНСО3

Кислотно-основная реакция мочи зависит только от содержания дигидрофосфата, т.к. бикарбонат натрия в почечных канальцах реабсорбируется.

Белковая буферная система

Буферная мощность этой системы составляет 5% от общей буферной емкости крови.

Белки плазмы, в первую очередь альбумин, играют роль буфера благодаря своим амфотерным свойствам.

В кислой среде подавляется диссоциация СООН-групп, а группы NH2 связывают избыток Н+, при этом белок заряжается положительно.

В щелочной среде усиливается диссоциация карбоксильных групп, образующиеся Н+ связывают избыток ОН–-ионов и pH сохраняется, белки выступают как кислоты и заряжаются отрицательно.

Гемоглобиновая буферная система

Наибольшей мощностью обладает гемоглобиновый буфер, который можно рассматривать как часть белкового. На него приходится до 30% всей буферной емкости крови.



В буферной системе гемоглобина существенную роль играет гистидин, который содержится в белке в большом количестве.

Изоэлектрическая точка гистидина равна 7,6, что позволяет гемоглобину легко принимать и легко отдавать ионы водорода при малейших сдвигах физиологической рН крови (в норме 7,35-7,45).

Данный буфер представлен несколькими подсистемами:

Пара ННb/ННbО2 является основной в работе гемоглобинового буфера.

Соединение ННbО2 является более сильной кислотой по сравнению с угольной кислотой, HHb - более слабая кислота, чем угольная. Установлено, что ННbО2 в 80 раз легче отдает ионы водорода, чем ННb.

Присоединение ионов водорода к остатку гистидина дезоксигемоглобина выглядит так:

Работа гемоглобинового буфера неразрывно связана с дыхательной системой (к вопросу о значении пранаямы! - ALG)

В легких после удаления СО2 (угольной кислоты) происходит защелачивание крови.

При этом присоединение О2 к дезоксигемоглобину H-Hb образует кислоту ННbО2 более сильную, чем угольная. Она отдает свои ионы Н+ в среду, предотвращая повышение рН:

Н-Hb + O2 > > НbO2 + Н+

В капиллярах тканей постоянное поступление кислот (в том числе и угольной) из клеток приводит к диссоциации оксигемоглобина НbO2 (Эффект Бора) и связыванию ионов Н+ в виде Н-Hb:

НbO2+ Н+ > > Н-Hb + O2

Длительная стабилизация сдвигов рН

Это так называемая физиологическая компенсация нарушений кислотно-основного состояния, которая происходит прежде всего за счет работы дыхательной системы и почек, и в меньшей степени - за счет печени и костной системы.

Дыхательная система

Легочная вентиляция обеспечивает удаление угольной кислоты, образованной при функционировании бикарбонатной буферной системы. По скорости реакции на изменение рН – это вторая система после буферных систем.

Дополнительная вентиляция легких приводит к удалению СО2, а значит и Н2СО3, и повышает рН крови, что компенсирует закисление межклеточной жидкости и плазмы крови продуктами метаболизма, в первую очередь, органическими кислотами.

Сдвиги значений рО2 не являются сильно значимыми для изменения легочной вентиляции. Только снижение рО2 до 8 кПа в артериальной крови (норма 11,04-14,36 кПа или 83-108 мм рт.ст.) приводит к увеличению активности дыхательного центра.

Более существенным фактором для активации дыхательной системы является концентрация ионов Н+.

Накопление ионов Н+ в крови уже через 1-2 минуты вызывает максимальную (для данной их концентрации) стимуляцию дыхательного центра, повышая его активность до 4-5 раз, что приводит к снижению рСО2 до 10-15 мм рт.ст.

И, наоборот, снижение кислотности крови понижает активность дыхательного центра на 50-75%, рСО2 при этом способен возрастать до 60 мм рт.ст и выше.

Костная ткань

Это наиболее медленно реагирующая система. Механизм ее участия в регуляции рН крови состоит в возможности обмениваться с плазмой крови ионами Са2+ и Na+ в обмен на протоны Н+. Происходит растворение гидроксиапатитных кальциевых солей костного матрикса, освобождение ионов Са2+ и связывание ионов НРО42– с Н+ с образованием дигидрофосфата, который уходит с мочой.

Параллельно при снижении рН (закисление) происходит поступление ионов H+внутрь остеоцитов, а ионов калия – наружу.

Печень

Существенную, но пассивную роль в регуляции кислотно-основного состояния крови берет на себя печень, в которой происходит метаболизм низкомолекулярных органических кислот (молочная кислота и др). Кроме этого, кислые и щелочные эквиваленты выделяются с желчью.

Почки

Развитие почечной реакции на смещение кислотно-основного состояния происходит в течение нескольких часов.

Регуляция концентрации ионов H+ осуществляется опосредованно, через потоки ионов Na+, движущихся по градиенту концентрации, и через перераспределение потоков ионов К+ и Н+, которые выходят из эпителиоцитов (секретируются) в обмен на ионы Na+.

Также для обеспечения электронейтральности внутри- и внеклеточной жидкости при реабсорбции ионов Na+ усиливается реабсорбция ионов Cl–, однако их не хватает, поэтому возникает необходимость в усилении реабсорбции и дополнительном синтезе ионов HCO3– (и вот тут-то как раз и играет свою роль сода - бикарбонат натрия NaHCO3. Если мы поставляем организму дополнительное количество ионов HCO3 посредством соды, мы существенно снижаем нагрузку с почек и помогаем им в работе - ALG)

В почках активно протекают три процесса, связанных с уборкой кислых эквивалентов. Благодаря этим процессам рН мочи в состоянии снижаться до 4,5-5,2:

1. Реабсорбция бикарбонатных ионов HCO3–.

2. Ацидогенез – удаление ионов Н+ с титруемыми кислотами (в основном в составе дигидрофосфатов NaH2PO4).

3. Аммониегенез – удаление ионов Н+ в составе ионов аммония NH4+.

Реабсорбция бикарбонат-ионов

В проксимальных канальцах ионы Na+ мигрируют в цитозоль эпителиальных клеток в силу концентрационного градиента, который создается на базолатеральной мембране при работе фермента Na+,К+ АТФазы.

В обмен на ионы Na+ эпителиоциты канальцев активно секретируют в канальцевую жидкость ионы водорода.

Ионы HCO3– первичной мочи и секретируемые ионы Н+ образуют угольную кислоту Н2СО3.

В гликокаликсе эпителиоцитов фермент карбоангидраза катализирует распад угольной кислоты на СО2 и воду.

В результате возникает градиент концентрации углекислого газа между просветом канальцев и цитозолем и СО2 диффундирует в клетки.

Внутриклеточная карбоангидраза использует пришедший СО2 и образует угольную кислоту, которая диссоциирует.

Ионы НСО3– транспортируются в кровь, ионы Н+ – секретируются в мочу в обмен на ионы Na+. Таким образом, объем реабсорбции НСО3– полностью соответствует секреции ионов Н+.

Процесс реабсорбции бикарбонат-ионов

В проксимальных канальцах происходит реабсорбция 90% профильтрованного НСО3–.

В петле Генле и дистальных канальцах реабсорбируется оставшееся количество карбонат-иона. Всего в почечных канальцах реабсорбируется более 99% от фильтруемых бикарбонатов.

(Из всего вышесказанного становится очевидным, что дополнительное поступление в систему бикарбонат-ионов благодаря приему бикарбоната натрия - соды - снижает нагрузку на эту сторону работы почек. Чем больше свободных бикарбонат-ионов имеется в системе, тем меньше зависимость организма от этого процесса их реабсорбции. Соответственно, почки не сильно напрягаются в этом плане, в результате чего мы на выходе имеем мочу с более щелочной реакцией! Известно же, что у новорожденных показатель мочи близок к 8...ALG)

Ацидогенез

В процессе ацидогенеза в сутки с мочой выделяется 10-30 ммоль кислот, называемых титруемыми кислотами.

Фосфаты, являясь одной из этих кислот, играют роль буферной системы в моче.

Роль этой системы состоит экскреции кислых эквивалентов без потерь бикарбонат-ионов за счет дополнительного иона водорода в составе выводимого NaH2PO4 (по сравнению с NaHCO3):

Na2HPO4 + Н2СО3 > NaH2PO4 + NaНСО3

После того как бикарбонат натрия в почечных канальцах реабсорбируется, кислотность мочи зависит только от связывания ионов Н+с HPO42– и содержания дигидрофосфата.

Процесс ацидогенеза в почечных канальцах

Хотя в крови соотношение HРO42– : H2РO4– равно 4: 1, в клубочковом фильтрате оно меняется на 1: 9.

Происходит это из-за того, что менее заряженный H2РO4– лучше фильтруется в клубочках.

Связывание ионов Н+ ионами HРO42– на протяжении всего канальца приводит к увеличению количества H2РO4–.

В дистальных канальцах соотношение может достигать 1: 50.

Аммониегенез

Аммониегенез происходит на протяжении всего почечного канальца, но более активно идет в дистальных отделах – дистальных канальцах и собирательных трубочках коркового и мозгового слоев. Глутамин и глутаминовая кислота, попадая в клетки канальцев, быстро дезаминируются ферментами глутаминаза и глутаматдегидрогеназа с образованием аммиака.

Являясь гидрофобным соединением, аммиак диффундирует в просвет канальца и акцептирует ионы Н+ с образованием аммонийного иона.

Источником ионов H+ первичной мочи в проксимальных отделах канальца является Na+, H+-антипорт. В дистальных отделах, в отличие от проксимальных, секреция ионов Н+ происходит с участием Н+-АТФазы, локализованной на апикальной мембране вставочных клеток.

Кислотно-основное равновесие.

Кислотно-основное равновесие – это соотношение концентрации водородных (Н +) и гидроксильных (ОН -) ионов в жидкостях организма.

Постоянство рН внутренней среды организма обусловлено совместным действием буферных систем и ряда физиологических механизмов.

1. Буферные системы крови и тканей:

Бикарбонатная: NaHCO 3 + Н 2 СО 3

Фосфатная: NaHРO 4с + NaHРO 4к

Белковая: протеин-Na + + протеин-Н +

Гемоглобиновая: HbK+HbH +

2. Физиологический контроль:

Дыхательная функция легких

Выделительная функция почек

КЩР отражает клеточный метаболизм, газотранспортную функцию крови, внешнее дыхание и водно-солевой обмен.

В норме рН крови колеблется от 7,37 до 7,44, среднее значение рН=7,4.

Буферные системы поддерживают постоянство рН при поступлении кислых и основных (ОН -) продуктов. Буферное действие объясняется связыванием свободных Н + и ОН - ионов компонентами буфера и переводом их в недиссоциированную форму слабой кислоты или воды.

Буферные системы организма состоят из слабых кислот и их солей с сильными основаниями.

Для устранения сдвига рН необходимо различное время:

Буферные системы – 30 сек

Дыхательный контроль – 1 – 3 мин

Выделительная функция почек – 10 – 20 час.

Буферные системы устраняют только сдвиги рН. Физиологические механизмы восстанавливают и буферную емкость.

Бикарбонатная буферная система.

На долю бикарбонатного буфера приходится около 10% всей буферной емкости крови.

Бикарбонатный буфер состоит из угольной кислоты, выполняющей роль донора протона, и бикарбонат-иона , выполняющего роль акцептора протона.

Н 2 СО 3 – слабая кислота, трудно диссоциирует

Н 2 СО 3 Н + +

NaНСО 3 – соль слабой кислоты и сильного основания диссоциирует полностью:

NaНСО 3 Na + +

Механизм действия буфера

1. При поступлении в кровь кислых продуктов водородные ионы взаимодействуют с ионами бикарбоната , образуется слабо диссоциирующая угольная кислота:

Н + + NaНСО 3 Na + + Н 2 СО 3

Восстанавливается соотношение Н 2 СО 3 / NaНСО 3 , рН не изменяется (концентрация NaНСО 3 незначительно понижается).



Легкие обеспечивают выведение углекислого газа.

2. При поступлении в кровь оснований из тканей, ионы ОН - взаимодействуют со слабой угольной кислотой (ионы ОН - взаимодействуют с Н + из буфера, образуя Н 2 О)

Н 2 СО 3 + ОН - Н 2 О +

рН сохраняется, увеличивается. Избыток усиливает диссоциацию Н 2 СО 3 , расход Н + восполняется усилением диссоциации Н 2 СО 3 .

При нормальном значении рН крови концентрация ионов бикарбоната в плазме крови превышает концентрацию углекислого газа примерно в 20 раз:

Фосфатная буферная система

Компоненты буфера:

Na 2 НРО 4с – соль – двузамещенный фосфат

NaН 2 РО 4к – слабая кислота – однозамещенный фосфат

Соотношение

На долю фосфатной буферной системы приходится 1% буферной емкости крови.

Механизм действия буфера.

1. При поступлении в кровь кислых продуктов обмена веществ происходит связывание ионов Н + с двузамещенным фосфатным ионом , образуется кислый однозамещенный ион , избыток которого удаляется почками с мочой:

Фосфатный буфер действует при изменении рН в интервале от 6,1 до 7,7. В крови максимальная емкость фосфатного буфера проявляется при 7,2.

Фосфатная буферная система играет существенную роль в регуляции КЩР внутри клеток, особенно - канальцев почек. Это обусловлено более высокой концентрацией фосфатов в клетках в сравнении с внеклеточной жидкостью (около 8% общей буферной ёмкости). Фосфатный буфер состоит из двух компонентов: щелочного - (Na 2 HPO 4) и кислого - (NaH 2 PO 4).

Эпителий канальцев почек содержит компоненты буфера в максимальной концентрации, что обеспечивает его высокую мощность. В крови фосфатный буфер способствует поддержанию («регенерации») гидрокарбонатной буферной системы. При увеличении уровня кислот в плазме крови (содержащей и гидрокарбонатный, и фосфатный буфер) увеличивается концентрация H 2 CO 3 и уменьшается содержание NaHCO 3:

H 2 CO 3 + Na 2 HPO 4  NaHCO 3 + NaH 2 PO 4

В результате избыток угольной кислоты устраняется, а уровень NaHCO 3 возрастает.

Белковая буферная система

Белковая буферная система - главный внутриклеточный буфер. Он составляетпримерно три четверти буферной емкости внутриклеточной жидкости.

Компонентами белкового буфера являются слабодиссоциирующий белок с кислыми свойствами (белок‑COOH) и соли сильного основания (белок‑COONa). При нарастании уровня кислот они взаимодействуют с солью белка с образованием нейтральной соли и слабой кислоты. При увеличении концентрации оснований реакция их происходит с белком с кислыми свойствами. В результате вместо сильного основания образуется слабоосновная соль.

Гемоглобиновая буферная система

Гемоглобиновая буферная система - наиболее ёмкий буфер крови - составляет более половины всей её буферной ёмкости. Гемоглобиновый буфер состоит из кислого компонента - оксигенированного Hb - HbO 2 и основного - неоксигенированного. HbO 2 примерно в 80 раз сильнее диссоциирует с отдачей в среду H + , чем Hb. Соответственно, он больше связывает катионов, главным образом K + .

Основная роль гемоглобиновой буферной системы заключается в её участии в транспорте CO 2 от тканей к лёгким.

В капиллярах большого круга кровообращения HbO 2 отдаёт кислород. В эритроцитах CO 2 взаимодействует с H 2 O и образуется H 2 CO 3 . Эта кислота диссоциирует на HCO 3 – и H + , который соединяется с Hb. Анионы HCO 3 – из эритроцитов выходят в плазму крови, а в эритроциты поступает эквивалентное количество анионов Cl – . Остающиеся в плазме крови ионы Na + взаимодействуют с HCO 3 – и благодаря этому восстанавливают её щелочной резерв.

В капиллярах лёгких , в условиях низкого pСО 2 и высокого pО 2 , Hb присоединяет кислород с образованием HbO 2 . Карбаминовая связь разрывается, в связи с чем высвобождается CO 2 . При этом, HCO 3 – из плазмы крови поступает в эритроциты (в обмен на ионы Cl –) и взаимодействует с H + , отщепившимся от Hb в момент его оксигенации. Образующаяся H 2 CO 3 под влиянием карбоангидразы расщепляется на CO 2 и H 2 O. CO 2 диффундирует в альвеолы и выводится из организма.

Карбонаты костной ткани

Карбонаты костной ткани функционируют как депо для буферных систем организма. В костях содержится большое количество солей угольной кислоты: карбонаты кальция, натрия, калия и др. При остром увеличении содержания кислот (например, при острой сердечной, дыхательной или почечной недостаточности, шоке, коме и других состояниях) кости могут обеспечивать до 30–40% буферной ёмкости. Высвобождение карбоната кальция в плазму крови способствует эффективной нейтрализации избытка H + . В условиях хронической нагрузки кислыми соединениями (например, при хронической сердечной, печёночной, почечной, дыхательной недостаточности) кости могут обеспечивать до 50% буферной ёмкости биологических жидкостей организма.

ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ

Наряду с мощными и быстродействующими химическими системами в организме функционируют органные механизмы компенсации и устранения сдвигов КОС. Для их реализации и достижения необходимого эффекта требуется больше времени - от нескольких минут до нескольких часов. К наиболее эффективным физиологическим механизмам регуляции КОС относят процессы, протекающие в лёгких, почках, печени и ЖКТ.

Лёгкие

Лёгкие обеспечивают устранение или уменьшение сдвигов КОС путём изменения объёма альвеолярной вентиляции. Это достаточно мобильный механизм - уже через 1–2 мин после изменения объёма альвеолярной вентиляции компенсируются или устраняются сдвиги КОС.

Причиной изменения объёма дыхания является прямое или рефлекторное изменение возбудимости нейронов дыхательного центра.

Снижение рН в жидкостях организма (плазма крови, СМЖ) является специфическим рефлекторным стимулом увеличения частоты и глубины дыхательных движений. Вследствие этого лёгкие выделяют избыток CO 2 (образующийся при диссоциации угольной кислоты). В результате содержание H + (HCO 3 – + H + = H 2 CO 3 ® H 2 O + CO 2) в плазме крови и других жидкостях организма снижается.

Повышение рН в жидких средах организма снижает возбудимость инспираторных нейронов дыхательного центра. Это приводит к уменьшению альвеолярной вентиляции и выведению из организма CO 2 , т.е. к гиперкапнии. В связи с этим в жидких средах организма возрастает уровень угольной кислоты, диссоциирующей с образованием H + , - показатель рН снижается.

Следовательно, система внешнего дыхания довольно быстро (в течение нескольких минут) способна устранить или уменьшить сдвиги рН и предотвратить развитие ацидоза или алкалоза: увеличение вентиляции лёгких в два раза повышает рН крови примерно на 0,2; снижение вентиляции на 25% может уменьшить рН на 0,3‑0,4.

Почки

К главным механизмам уменьшения или устранения сдвигов КОС крови, реализуемых нефронами почек, относят ацидогенез, аммониогенез, секрецию фосфатов и K + ,Na + ‑обменный механизм.

Ацидогенез . Этот энергозависимый процесс, протекающий в эпителии дистальных отделов нефрона и собирательных трубочек, обеспечивает секрецию в просвет канальцев H + в обмен на реабсорбируемый Na + (рис. 14–1).

Ы ВЁРСТКА Вставить файл « ПФ Рис 14 01 Реабсорбция HCO3‑ в клетках проксимального отдела»

Рис .14–1 .Реабсорбция HCO 3‑ в клетках проксимального отдела .

КА - карбоангидраза.

Ы ВЁРСТКА Вставить файл « ПФ Рис 14 02 Реабсорбция HCO3‑ в клетках проксимального отдела»

Рис .14–2 .Секреция H + клетками канальцев и собирательных трубочек .

КА - карбоангидраза.

Количество секретируемого H + эквивалентно его количеству, попадающему в кровь с нелетучими кислотами и H 2 CO 3 . Реабсорбированный из просвета канальцев в плазму крови Na + участвует в регенерации плазменной гидрокарбонатной буферной системы (рис. 13–2).

Аммониогенез , как и ацидогенез, реализует эпителий канальцев нефрона и собирательных трубочек. Аммониогенез осуществляется путём окислительного дезаминирования аминокислот, преимущественно (примерно 2/3) - глютаминовой, в меньшей мере - аланина, аспарагина, лейцина, гистидина. Образующийся при этом аммиак диффундирует в просвет канальцев. Там NH 3 + присоединяет ион H + с образованием иона аммония (NH 4 +). Ионы NH 4 + замещают Na + в солях и выделяются преимущественно в виде NH 4 Cl и (NH 4) 2 SO 4 . В кровь при этом поступает эквивалентное количество гидрокарбоната натрия, обеспечивающего регенерацию гидрокарбонатной буферной системы.

Секреция фосфатов осуществляется эпителием дистальных канальцев при участии фосфатной буферной системы:

Na 2 HPO 4 + H 2 CO 3  NaH 2 PO 4 + NaHCO 3

Образующийся гидрокарбонат натрия реабсорбируется в кровь и поддерживает гидрокарбонатный буфер, а NaH 2 PO 4 выводится из организма с мочой.

Таким образом, секреция H + эпителием канальцев при реализации трёх описанных выше механизмов (ацидогенеза, аммониогенеза, секреции фосфатов) сопряжена с образованием гидрокарбоната и поступлением его в плазму крови. Это обеспечивает постоянное поддержание одной из наиболее важных, ёмких и мобильных буферных систем - гидрокарбонатной и как следствие - эффективное устранение или уменьшение опасных для организма сдвигов КОС.

К + ,Na + ‑обменный механизм , реализуемый в дистальных отделах нефрона и начальных участках собирательных трубочек, обеспечивает обмен Na + первичной мочи на K + , выводящийся в неё эпителиальными клетками. Реабсорбированный Na + в жидких средах организма участвует в регенерации гидрокарбонатной буферной системы. K + ,Na + ‑обмен контролируется альдостероном. Кроме того, альдостерон регулирует (увеличивает) объём секреции и экскреции H + .

Таким образом, почечные механизмы устранения или уменьшения сдвигов КОС осуществляются путём экскреции H + и восстановления резерва гидрокарбонатной буферной системы в жидких средах организма.

Печень

Печень играет существенную роль в компенсации сдвигов КОС. В ней действуют, с одной стороны, общие внутри‑ и внеклеточные буферные системы (гидрокарбонатная, белковая и др.), с другой стороны, в гепатоцитах осуществляются различные реакции метаболизма, имеющие прямое отношение к устранению расстройств КОС.

Синтез белков крови , входящих в белковую буферную систему. В печени образуются все альбумины, а также фибриноген, протромбин, проконвертин, проакцелерин, гепарин, ряд глобулинов и ферментов.

Образование аммиака , способного нейтрализовать кислоты как в самих гепатоцитах, так и в плазме крови и в межклеточной жидкости.

Синтез глюкозы из неуглеводных веществ - аминокислот, глицерина, лактата, пирувата. Включение этих органических нелетучих кислот при образовании глюкозы обеспечивает снижение их содержания в клетках и биологических жидкостях. Так, МК, которую многие органы и ткани не способны метаболизировать, в гепатоцитах примерно на 80% трансформируется в H 2 O и CO 2 , а оставшееся количество ресинтезируется в глюкозу. Таким образом, лактат превращается в нейтральные продукты.

Выведение из организма нелетучих кислот - глюкуроновой и серной при детоксикации продуктов метаболизма и ксенобиотиков.

Экскреция в кишечник кислых и основных веществ с жёлчью.

Желудок и кишечник

Желудок участвует в демпфировании сдвигов КЩР, главным образом, путём изменения секреции соляной кислоты: при защелачивании жидких сред организма этот процесс тормозится, а при закислении - усиливается. Кишечник способствует уменьшению или устранению сдвигов КЩР посредством:

Секреции кишечного сока, содержащего большое количество гидрокарбоната. При этом в плазму крови поступает H + .

Изменения количества всасываемой жидкости . Это способствует нормализации водного и электролитного баланса в клетках, во внеклеточной и других биологических жидкостях и как следствие - - нормализации рН.

Реабсорбции компонентов буферных систем (Na + , K + , Ca 2+ , Cl – , HCO 3 –).


Похожая информация.