Основные закономерности наследования признаков у организмов. Основные генетические понятия. Закономерности наследственности. Генетика человека. Кодоминирование и неполное доминирование

план

среднее.

Признак

аллельными.

гомозиготные (АА) или (аа)

– то гетерозиготные (Аа)

для генов гемизиготность

доминантным

рецессивный

По 2 – дигибридное

По 3 – тригибридное

G- гаметы (половые клетки)

Первый закон Менделя –

Второй закон – независимого расщепления

При скрещивании гетерозигот первого поколения аллельные гены распределяются в гаметах независимо друг от друга и дают в потомстве соотношение 1АА:2Аа:1аа. Исследование внешних особенностей таких гибридов обнаруживает, что частота носителей доминантного признака по отношению к особям, проявляющим рецессивный аллель – составляет 3:1

Третий закон – независимого комбинирования

При скрещивании особей, различающихся по 2 или более парам аллелей, все гены распределяются в потомстве независимо друг от друга. (как в теории вероятности – необходимо большое кол-во экспериментов)

· Оказалось, что 1 ген может влиять на формирование нескольких признаков – плейотропия – При: синдром Марфана – поражение ССС, скелета и глаз) и др.

· Также установлено, что гены не существуют независимо, а оказывают определенное влияние друг на друга (кроме доминирования - кодоминирование и неполное доминирование)

· Неаллельные гены, расположенные в разных локусах хромосом, также могут взаимодействовать между собой – комплементарность – при этом сочетание 2-х пар неаллельных генов в одном организме вызывает формирование нового признака.

· Другой тип – Эпистаз – подавляет действие другой.

· Формирование 1 признака может зависеть от действия нескольких пар неалльных генов – полигенное наследование – так наследуется цвет кожи. У представителей негроидной расы – доминантные аллели, европеоидной рецессивные.

Сцепленный с полом тип наследования

Гены признаков, характеризующихся сцепленным с полом наследованием, располагаются на половых хромосомах.

Y-хромосома содержит 19 генов – большинство отвечает за формирование мужских половых органов. Эти признаки передаются только сыновьям , но не дочерям!

Х-хромосома – более 400 генов – отвечающих за различные признаки организма. Поэтому, для медицинской генетики значение имеет наследование сцепленное с Х–хромосомой, которое различается в зависимости от доминантности или рецессивности анализируемого гена.

Генотип. фенотип

1909г Иогансен дал определение важнейшим понятиям генетики

Генотип – совокупность генов организма, проявляющихся во внешних признаках. Формируется в момент образования зиготы и не меняется в течение жизни.

Лечение может привести к исчезновению патологических проявлений, но генотип больного не изменится.

Огромное разнообразие генотипов даже у представителей одного вида обеспечивается процессами независимого распределения хромосом в мейозе, кроссинговером и случайным сочетанием половых клеток в момент оплодотворения.

Полное совпадение набора генов возможно только у однояйцовых близнецов, развивающихся из одной зиготы.

Фенотип – сочетание всех внешних признаков организма, его структура и функции. Он - результат сложного взаимодействия между генотипом и внешней средой. фенотип может меняться под действием различных факторов. Даже полное генотипическое сходство не обеспечивает идентичность фенотипа

Генотип не определяет фенотип строго однозначно. Он создает своего рода границы, в пределах которых под воздействием факторов внешней среды может происходить изменение признаков.

Фенотипические проявления гена зависят не только от доминантности или рецессивности, но и воздействия внешней среды и другие гены.

Эксперессивность- степень выраженности признака

Пенетрантность- определяется долей особей, проявляется в фенотипе, выражается в %. (ахондроплазия – 100%. Большинство пат. состояний – 60- 80%). Иногда регистрируется «пропуск поколения»

Во многих случаях трудно установить соответствие между геном и конкретным признаком, т.к. 1 ген может контролировать формирование сразу нескольких фенотипических признака. (плейотропия).

Карты хромосом человека

Открытия Моргана создали основу для определения мест расположения генов и оценки расстояния между ними. Расстояние между генами измеряется частотой кроссинговера. Т.есть отношением кол-ва особей, которые унаследовали только один ген, к числу тех, у кого были представлены совместно 2 гена, выраженное в %, ед. такого расстояния является 1% кроссинговера – 1сантиморганида.

Расстояние между генами в 1% кроссинговера показывает, что они обычно передаются потомкам совместно (сцеплено).

Если 50% - гены наследуются независимо друг от друга.

Возможность оценки расстояния между генами стала основой для построения генетических карт.

Г.К хромосомы – отрезок прямой, на котором указывается порядок расположения генов относительно друг друга и расстояние между ними в сантиморганидах.

Созданы генетические паспорта. Используются на практике экспертные системы. Проведение подобных работ влечет за собой очень много вопросов не только технических, но и нравственных, социальных, экономических.

Исследование генома открывает путь молекулярной медицине для Дз, лечения и профилактики наследственных заболеваний

ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ.

план

1. Наследование признаков при моногибридном, дигибридном и полигибридном скрещивании.

2. Взаимодействие между генами.

3. Пенетрантность и экспрессивность генов.

4. Хромосомная теория наследственности. Хромосомные карты человека.

Тайна передачи признаков по наследству всегда привлекала людей. В I веке до н. э. древнеримский философ Лукреций заметил, что дети иногда походят на своих дедушек или прадедушек. Столетием спустя Плиний Старший писал: «Часто бывает так, что у здоровых родителей рождаются дети-калеки, а у родителей-калек - здоровые дети или дети с тем же уродством, в зависимости от случая». Еще первые земледельцы поняли, что некоторые признаки зерновых, например пшеницы, или домашних животных, например овец, передаются по наследству, поэтому путем отбора можно создавать новые сорта растений и новые породы животных. И сейчас мы порой восхищенно восклицаем: «У него улыбка матери!» или «У нее характер отца!», особенно когда хотим сказать, что эти черты достались детям по наследству от родителей.

Несмотря на то что о наследственности люди знали давно, природа этого механизма оставалась для них скрытой. Невозможно было дать понятное объяснение наследственности или определить законы передачи тех или иных признаков.

Самое первое и простое, приходящее на ум, - предположение, что признаки родителей в равной степени «перемешиваются» в детях, потому дети должны представлять собой нечто среднее. Это все равно, что взять банки с красной и белой красками, перемешать их и получить розовый цвет.

Отсюда может возникнуть предположение, что не только простые признаки (цвет волос и глаз или форма носа), но и сложные, вроде манеры поведения или черт характера, будут отражать нечто среднее между признаками родителей. Однако при дальнейшем смешении красок никогда не получится чистый цвет; из розовой краски нельзя получить чисто белую или чисто красную.

Уже древние римляне около 2 тысяч лет назад понимали, что наследственные признаки передаются каким-то другим способом.

Кроме того, на такие сложные признаки, как характер или умственные способности, огромное влияние оказывает внешняя среда, в частности воспитание.

Очевидно, что все первые научные гипотезы о наследственности оставались умозрительными догадками.

И только в середине XIX века эксперименты Грегора Менделя предоставили материал, позволивший впервые подойти к правильному пониманию механизма наследственности.

Прежде, чем перейти к рассмотрению законов Менделя вспомним основные понятия, которые используются в генетике

Признак – внешнее проявление действия гена – как результат функционирования соответствующего белка. Признаками могут быть – рост, цвет глаз и кожи, длина пальцев и т.д. окончательное формирование признака зависит также и от других генов и от факторов внешней среды.

Гены, отвечающие за различные проявления одного и того же признака (например длины пальцев – длинные или короткие) и расположенные в одинаковых местах (локусах) гомологичных хромосом, называются аллельными. В любом диплоидном организме за признак отвечают 2 аллельных гена . Из этой пары 1- от отца, 2-й – от матери, за исключением генов половых хромосом, которые у мужчин в норме непарные.

Если оба аллельных гена одинаковы по функции (одно и то же проявление признака) – гомозиготные (АА) или (аа)

Если действие обоих аллелей различается (норма патология, длинные -короткие, гладкие – всклоченные)– то гетерозиготные (Аа)

В норме у мужчин в половых хромосомах характерна для генов гемизиготность

Хотя аллели и находятся на не связанных друг с другом гомологичных хромосомах, для формирования признака важно влияние продуктов деятельности обоих генов. Если функция одного из аллельных генов не зависит от другого из этой пары, и он приводит к появлению признака – то его называют – доминантным (подавляющий) (А/) – белый локон, короткие пальцы, курчавые волосы, Габсбургская губа и т.д.)

Ген, действие которого проявляется в отсутствии доминантного аллеля только в гомозиготном состоянии – рецессивный (а) – альбинизм, 1 группа крови, неспособность сложить язык трубочкой.

В герерозиготном состоянии рецессивные гены могут передаваться последующим поколениям почти никак себя не проявляя.

Проводя опыты, назовем скрещивание 2-х организмов гибридизацией, а потомков этого скрещивания – гибридами. Если особи различаются по 1 признаку – моногибридное скрещивание

По 2 – дигибридное

По 3 – тригибридное

Согласно общепринятым обозначениям

родительских особей назовем Р (родитель)

G- гаметы (половые клетки)

F1 – гибриды /дети первого поколения

F2 – второго; ♀- жен, ♂-муж, х -скрещивание

Первый закон Менделя – при скрещивании 2-х особей, гомозиготных по альтернативным аллелям одного гена, все гибриды первого поколения - единообразны, являются герерозиготами и проявляя доминантный признак.

Биология 9 класс. Общие закономерности (Мамонтов). Раздел 3. Наследственность и изменчивость организмов. Электронная версия (ТРАНСКРИПТ). Цитаты использованы в учебных целях.

Раздел 3. Наследственность
и изменчивость организмов

Глава 7. Закономерности наследования признаков.

Генетика - это наука о закономерностях наследственности и изменчивости живых организмов.

Наследственность - это способность живых организмов передавать свои признаки, свойства и особенности развития из поколения в поколение.

Изменчивость - это способность организмов приобретать в процессе индивидуального развития новые признаки и свойства по сравнению с другими особями того же вида.

Основоположником генетики является чешский учёный Г. Мендель, который разработал методы генетических исследований, установил основные законы наследования признаков и опубликовал их в 1865 г. Эти законы были подтверждены разными учёными в 1900 г., который и считается годом рождения генетики.

Закономерности наследования признаков. Первые попытки экспериментального решения проблем, связанных с передачей признаков из поколения в поколение, предпринимались уже в XVIII в. Учёные, скрещивая между собой различающиеся особи и получая от них потомство, стремились узнать, как наследуются родительские признаки. Однако неверный методический подход - одновременное изучение большого количества признаков - не позволял выявить каких-либо закономерностей.

14. Основные понятия генетики

Вспомните! Наследственность Изменчивость ДНК

Генетика изучает два фундаментальных свойства живых организмов: наследственность и изменчивость.

Обычно наследственность определяется как способность родителей передавать свои признаки, свойства и особенности развития следующему поколению. Благодаря этому каждый вид животных или растений, грибов или микроорганизмов сохраняет на протяжении многих поколений характерные для него черты.

Клетки, через которые осуществляется преемственность поколений, - специализированные половые при половом размножении и неспециализированные клетки тела (соматические) при бесполом - несут в себе не сами признаки и свойства будущих организмов, а только их задатки, получившие название генов. Ген - участок молекулы. ДНК, определяющий возможность развития отдельного элементарного признака, или синтез одной белковой молекулы.

Признак, определяемый каким-либо геном, может и не развиться. Возможность проявления признаков в значительной степени зависит от присутствия других генов и от условий внешней среды. Следовательно, изучение условий проявления генов в виде признаков также составляет предмет генетики.

У всех организмов одного вида каждый ген располагается в одном и том же месте, или локусе, определённой хромосомы. В гаплоидном наборе хромосом имеется только один ген, ответственный за развитие данного признака. В диплоидном наборе хромосом (в соматических клетках) содержатся две гомологичные хромосомы и соответственно два гена, определяющих развитие какого-то одного признака. Гены, расположенные в одних и тех же локусах гомологичных хромосом и ответственные за развитие одного признака, называют аллельными.

Совокупность всех генов одного организма называют генотипом. Однако генотип - это не просто сумма генов. Возможность и форма проявления гена зависят, как будет показано дальше, от условий среды. В понятие среды входят не только условия, в которых существует данный организм или клетка, но и присутствие других генов. Оказавшись в одном генотипе, гены могут сильно влиять на проявление действия соседних генов.

Организмы одного вида различаются между собой. Это хорошо видно на примере вида Homo sapiens (Человек разумный), каждый представитель которого имеет свои индивидуальные особенности. Подобная индивидуальная изменчивость существует у организмов любого вида животных и растений. Таким образом, изменчивость - свойство организмов, противоположное наследственности, - это способность организмов приобретать новые признаки и свойства. Изменчивость обусловлена изменением строения наследственных задатков - генов - и, как следствие, изменением их проявления в процессе развития организмов. Существуют разные типы изменчивости. Изучением причин, форм изменчивости и её значения для эволюции также занимается генетика. При этом исследователи имеют дело не непосредственно с генами, а с результатами их проявления - признаками или свойствами. Поэтому законы наследственности и изменчивости изучают, наблюдая за признаками организмов в ряду поколений.

Совокупность всех признаков организма называют фенотипом. Сюда относятся не только внешние, видимые признаки (цвет кожи, волос, форма уха или носа, окраска цветков), но и биохимические (структура белка, активность фермента, концентрация гормонов в крови и т. д.), гистологические (форма и размеры клеток, строение тканей и органов), анатомические (строение тела и взаимное расположение органов) и т. д.

  1. Что такое ген?
  2. Как вы считаете, правильно ли будет сказать, что ген - это участок хромосомы?
  3. Сравните понятия «генотип» и «фенотип».
  4. Что такое признак? Какие бывают признаки? Приведите примеры признаков на различных уровнях организации.
  5. Опираясь на внешние, видимые признаки, опишите фенотип своего товарища по классу. Предложите одноклассникам по описанию определить, чей это фенотип.

15. Гибридологический метод изучения наследования признаков Грегора Менделя

Вспомните! Цветковые растения Самоопыление Наследственность Перекрёстное опыление

В своих опытах Г. Мендель использовал горох. Он выбрал для экспериментов организмы, относящиеся к чистым линиям, т. е. такие растения, в ряду поколений которых при самоопылении всё потомство было единообразным по изучаемому признаку. Надо отметить также, что он наблюдал за наследованием альтернативных, т. е. взаимоисключающих, контрастных признаков (см. таблицу). Например, цветки у одного растения были пурпурными, у другого - белыми, рост растения высокий или низкий и т. д.

Суть предложенного Менделем метода заключается в следующем: он скрещивал растения, различающиеся по одной паре взаимоисключающих признаков, а затем проводил индивидуальный анализ результатов каждого скрещивания с использованием математической статистики.

Мендель особенно подчёркивал среднестатистический характер открытых им закономерностей и необходимость исследования большого количества (тысячи) потомков для их выявления. Метод Менделя получил название гибридологического или метода скрещивания.

Закономерности наследования признаков, выявленные Менделем, в настоящее время принято формулировать в виде законов.

Вопросы для повторения и задания

  1. Кто был первооткрывателем закономерностей наследования признаков?
  2. Как вы считаете, почему в качестве экспериментального объекта Г. Мендель выбрал горох?
  3. Благодаря каким приёмам Г. Менделю удалось вскрыть законы наследования признаков?
  4. Известны ли вам какие-либо альтернативные, или контрастные, признаки у человека? Приведите примеры.
  5. Чем объяснить, что разработанный Г. Менделем гибридологический метод не используется в генетике человека?
  6. Используя дополнительные источники информации, подготовьте сообщение о жизни и творчестве Г. Менделя.

16. Первый закон Менделя

Вспомните! Половое размножение Гомологичные хромосомы Диплоидный набор хромосом Гаплоидный набор хромосом Фенотип Генотип

Скрещивание двух организмов называют гибридизацией’, потомство от скрещивания двух особей с различной наследственностью называют гибридным, а отдельную особь - гибридом. Моногибридным называют скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков. Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух вариантов признака, развитие которого обусловлено парой аллельных генов. Например, признак - цвет семян, взаимоисключающие варианты - жёлтый или зелёный. Все остальные признаки, свойственные данным организмам, во внимание не принимаются.

Если скрестить растения гороха с жёлтыми и зелёными семенами, то у полученных в результате скрещивания потомков (гибридов) семена будут жёлтыми. При скрещивании растений, различающихся гладкой и морщинистой формой семян, у гибридов семена будут гладкими. Следовательно, у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один. Второй признак не развивается. Преобладание у гибрида признака одного из родителей Г. Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным (от лат. доминус - господин), а противоположный, т. е. подавляемый, - рецессивным (от лат. рецессус - отступление, удаление). Ген, обеспечивающий формирование доминантного признака, принято обозначать прописной буквой, например А, рецессивного - строчной, а. Гены А и а называют аллельными генами или аллелями.

Как уже говорилось, Г. Мендель использовал в опытах растения, относящиеся к разным чистым линиям, потомки которых в длинном ряду поколений были сходны с родителями. Следовательно, у этих растений оба аллельных гена одинаковы.

Если в генотипе организма (зиготы) есть два одинаковых аллельных гена, абсолютно идентичных по последовательности нуклеотидов, такой организм называют гомозиготным по этому гену. Организм может быть гомозиготным по доминантным (АА или ВВ) или по рецессивным (аа или bb) генам. Если же аллельные гены отличаются друг от друга (один из них доминантный, а другой - рецессивный (Аа, ВЬ)), такой организм носит название гетерозиготного.

Закон доминирования - первый закон Менделя - называют также законом единообразия гибридов первого поколения, так как у всех особей этого поколения признак проявляется одинаково. Сформулировать этот закон можно следующим образом: при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных признаков, всё первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей.

Рассмотрите результаты скрещивания растений гороха, различающихся по окраске семян (жёлтые и зелёные) и по форме (гладкие и морщинистые).

Неполное доминирование. В гетерозиготном состоянии доминантный ген не всегда полностью подавляет проявление рецессивного гена. В ряде случаев гибрид первого поколения Fj не воспроизводит полностью ни одного из родительских признаков, и выражение признака носит промежуточный характер. Но все особи этого поколения проявляют единообразие по данному признаку. Так, при скрещивании ночной красавицы с красными цветками (АА) с растением, цветки которого окрашены в белый цвет (aa), в их потомстве - F1 - образуется промежуточная, розовая, окраска цветка (Аа): все потомки F1 единообразны (рис. 37).

Неполное доминирование - широко распространённое явление. Оно обнаружено при изучении наследования окраски цветка у львиного зева, строения перьев у птиц, окраски шерсти у крупного рогатого скота и овец, биохимических признаков у человека и т. д.

Вопросы для повторения и задания

  1. Что такое гибридизация?
  2. Какое скрещивание называют моногибридным?
  3. Какое явление носит название доминирования?
  4. Какой признак называют доминантным и какой - рецессивным?
  5. Расскажите об опытах Менделя по моногибридному скрещиванию растений гороха.
  6. Какой организм называют гомозиготным; гетерозиготным?
  7. Сформулируйте первый закон Менделя. Почему этот закон называют законом доминирования?
  8. Используя дополнительные источники информации, приведите примеры неполного доминирования признаков у человека.
  9. Какие растения ночной красавицы надо скрестить между собой, чтобы в потомстве получилась половина растений с розовыми цветками и половина - с белыми цветками?

17. Второй закон Менделя. Закон чистоты гамет

Вспомните! Доминантный Рецессивный Генотип Фенотип

Второй закон Менделя (закон расщепления). Если потомков первого поколения - гетерозиготных особей, одинаковых по изучаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей проявляются в определённом числовом соотношении: 3/4 особей будут иметь доминантный признак, 1/4 - рецессивный.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называют расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении (F2).

Таким образом, второй закон Менделя можно сформулировать следующим образом: при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определённом числовом отношении: по фенотипу 3:1, по генотипу 1:2:1. Это означает, что среди потомков 25% организмов будут обладать доминантным признаком и являться гомозиготными, 50% потомков, также с доминантным фенотипом, окажутся гетерозиготными, а остальные 25% особей, несущих рецессивный признак, будут гомозиготными по рецессивному гену.

При неполном доминировании в потомстве гибридов (F2) расщепление по генотипу и фенотипу совпадает (1:2:1).

Закон чистоты гамет. Мендель предположил, что наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде. У гибрида F1 полученного от скрещивания родителей, различающихся по альтернативным признакам, присутствуют оба фактора: доминантный и рецессивный. В виде признака проявляется доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки - гаметы. Следовательно, необходимо допустить, что каждая гамета содержит только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несёт рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, несущих по доминантному фактору, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении (F2) рецессивного признака одного из родителей (Р) может иметь место только при соблюдении двух условий: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор из аллельной пары.

Расщепление признаков в потомстве при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы с генетической точки зрения чисты, т. е. несут только один ген из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.

Почему и как это происходит? В процессе образования гамет у гибрида гомологичные хромосомы во время первого мейотического деления попадают в разные клетки:

Образуются два сорта гамет по данной аллельной паре. При оплодотворении гены могут случайно комбинироваться в зиготе во всех возможных сочетаниях: АА, Аа, аа.

Цитологической основой расщепления признаков у потомства при моногибридном скрещивании является расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе.

Вопросы для повторения и задания

  1. Сформулируйте второй закон Г. Менделя. Почему его называют законом расщепления?
  2. Объясните, что такое чистота гамет. В прямом или переносном смысле в этом термине используется слово «чистота»?
  3. На каком явлении основан закон чистоты гамет?

18. Третий закон Менделя. Анализирующее скрещивание

Вспомните! Моногибридное скрещивание Гетерозиготный Гомозиготный Гомологичные хромосомы

Дигибридное скрещивание . Третий закон Менделя. Изучение наследования одной пары аллелей позволило Менделю установить ряд важных генетических закономерностей. Явление расщепления позволило предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельной пары.

Однако организмы отличаются друг от друга по многим признакам. Установить закономерности наследования двух (и более) пар альтернативных признаков можно путём дигибридного или полигибридного скрещивания. Дигибридным или полигибридным скрещиванием называют такое скрещивание, при котором исследователи наблюдают за характером наследования двух или более пар взаимоисключающих (альтернативных) признаков.

Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, различающиеся по двум генам: окраске семян (жёлтые и зелёные) и форме семян (гладкие и морщинистые). Доминантные признаки - жёлтая окраска (А) и гладкая форма (В) семян. Каждое растение образует один сорт гамет по изучаемым аллелям. При слиянии этих гамет всё потомство будет единообразным.

При образовании гамет у гибрида первого поколения из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b, точно так же как ген а может объединиться в одной гамете с геном В или с геном b.

Поскольку в каждом организме образуется много половых клеток, в силу статистических закономерностей у гибрида возникают четыре сорта гамет в одинаковом количестве (по 25%): АВ, Ab, аВ, аb. Во время оплодотворения каждая из гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решётки Пеннета. Над решёткой по горизонтали выписывают гаметы одного родителя, а по левому краю решётки по вертикали - гаметы другого. В квадратики вписывают генотипы зигот, образующихся при слиянии гамет (рис. 38). Так, по фенотипу потомство делится на четыре группы в следующем отношении: 9 жёлтых гладких: 3 жёлтых морщинистых: 3 зелёных гладких: 1 зелёное морщинистое. Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа жёлтых семян к числу зелёных и отношение числа гладких к числу морщинистых для каждой пары равно 3:1. Таким образом, в дигибридном скрещивании каждая пара признаков ведёт себя так же, как при моногибридном скрещивании, т. е. независимо от другой пары признаков.

При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каждой. Независимое распределение признаков в потомстве и возникновение различных комбинаций генов, определяющие развитие этих признаков, при дигибридном скрещивании возможны лишь в случае, если пары аллельных генов расположены в разных парах гомологичных хромосом.

Теперь можно сформулировать третий закон Менделя: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Если родительские формы различаются по двум парам признаков, во втором поколении наблюдается расщепление 9: 3: 3: 1. На законах Менделя основан анализ расщепления и в более сложных случаях: при различиях особей по трём, четырём (и более) парам признаков.

Анализирующее скрещивание . Для того чтобы установить, гомозиготен или гетерозиготен организм, имеющий доминантный фенотип по исследуемому гену (генам), его скрещивают с организмом, гомозиготным по рецессивному аллелю (аллелям), имеющему рецессивный фенотип.

Если доминантная особь гомозиготна, потомство от такого скрещивания будет единообразным и расщепления не произойдёт:

Иная картина произойдет, если исследуемы организм гетерозиготен:

Расщепление произойдёт в отношении 1: 1 по фенотипу. Такой результат - прямое доказательство образования у одного из родителей двух сортов гамет, т. е. его гетерозиготности (рис. 39).

Анализирующее скрещивание при гетерозиготности исследуемого организма по двум парам генов выглядит так:

В потомстве от такого скрещивания образуются четыре группы фенотипов, отличающиеся друг от друга по комбинации двух изучаемых признаков, в отношении 1: 1: 1: 1.

Вопросы для повторения и задания

  1. Сформулируйте третий закон Менделя. Почему его называют законом независимого наследования?
  2. Для каких аллельных пар справедлив третий закон Менделя?
  3. Что такое анализирующее скрещивание?
  4. Какое будет расщепление в анализирующем скрещивании, если исследуемая особь с доминантным фенотипом имеет генотип ААВЬ?
  5. Сколько типов гамет образуется у особи с генотипом AaBBCcDdffEe?
  6. Обсудите в классе, можно ли утверждать, что законы Менделя носят всеобщий характер, т. е. справедливы для всех организмов, размножающихся половым путём.

19. Сцепленное наследование генов

Вспомните! Мейоз Гомологичные хромосомы Негомологичные хромосомы Конъюгация Кроссинговер

Г. Мендель проследил наследование семи пар признаков у душистого горошка. В дальнейшем многие исследователи, изучая наследование признаков у организмов разных видов, подтвердили законы Менделя. Было признано, что эти законы носят всеобщий характер.

Однако позднее оказалось, что у душистого горошка два признака - форма пыльцы и окраска цветков - не дают независимого распределения в потомстве: потомки оставались похожими на родителей. Постепенно таких исключений из третьего закона Менделя накапливалось всё больше. Стало ясно, что принцип независимого распределения в потомстве и свободного комбинирования распространяется не на все гены. В самом деле, у любого организма признаков очень много, а число хромосом невелико. Следовательно, в каждой хромосоме должно находиться много генов. Такие гены называют сцепленными друг с другом. Они образуют группу сцепления. Иными словами, каждая хромосома представляет собой не что иное, как группу сцепления, а поскольку гомологичные хромосомы несут гены, отвечающие за развитие одних и тех же признаков, генетики в неё включают обе парные хромосомы. Число групп сцепления соответствует количеству хромосом в гаплоидном (одинарном) наборе. Так, например, у человека 46 хромосом - 23 группы сцепления, у дрозофилы 8 хромосом - 4 группы сцепления, у гороха 14 хромосом - 7 групп сцепления.

Гены, расположенные в одной хромосоме, наследуются так:

Явление совместного наследования генов, локализованных в одной хромосоме, называют сцепленным наследованием, а локализацию генов в одной хромосоме - сцеплением генов.

Таким образом, третий закон Менделя применим к наследованию аллельных пар, находящихся в негомологичных хромосомах.

Все гены, входящие в одну хромосому, передаются по наследству вместе. Эта закономерность была впервые вскрыта американским генетиком Томасом Морганом и впоследствии получила название закона его имени: гены, расположенные в одной хромосоме, называются сцепленными и наследуются совместно.

Однако при анализе наследования сцепленных генов было обнаружено, что в некотором проценте случаев, строго определённом для каждой пары генов, сцепление может нарушаться.

Вспомним мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют. В этот момент между ними может произойти обмен участками:

Если в результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, то появляются гаметы Аb и аВ и в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Отличие заключается в том, что числовое отношение фенотипов не соответствует отношению 1: 1: 1: 1, установленному для дигибридного анализирующего скрещивания.

Таким образом, сцепление генов может быть полным и неполным. Причиной нарушения сцепления служит кроссинговер - перекрёст хромосом в профазе I мейотического деления. Чем дальше друг от друга расположены гены в хромосоме, тем выше вероятность перекрёста между ними и тем больше процент гамет с перекомбинированными генами, а следовательно, и больше процент особей, отличных от родителей.

Вопросы для повторения и задания

  1. Для каких пар аллельных генов справедлив третий закон Менделя? При каком расположении различных пар аллельных генов он «не работает»?
  2. Что такое сцепленное наследование?
  3. Что такое группы сцепления? Сколько таких групп у человека?
  4. Какие процессы могут нарушать сцепление генов?
  5. Подумайте, чем можно объяснить тот факт, что вероятность перекрёста между генами тем больше, чем дальше друг от друга расположены эти гены на хромосоме.
  6. Согласны ли вы с утверждением, что нарушение сцепления генов повышает изменчивость? Объясните свою точку зрения.

20. Генетика пола. Наследование признаков, сцепленных с полом

Вспомните! Первичные половые признаки Вторичные половые признаки Гаметы Кариотип Дальтонизм Гемофилия

Проблема происхождения половых различий, механизмов определения пола и поддержания определённого соотношения полов в группах животных очень важна и для теоретической биологии, и для практики. Возможность искусственного регулирования пола животных была бы исключительно полезна для сельского хозяйства.

Пол у животных чаще всего определяется в момент оплодотворения. Важнейшая роль в этом принадлежит хромосомному набору зиготы. Вспомним, что в зиготе содержатся парные - гомологичные - хромосомы, одинаковые по форме, размерам и набору генов в каждой. На рисунке 40 изображены хромосомы человека - женщины и мужчины. В женском кариотипе все хромосомы парные. В мужском кариотипе имеются одна крупная равноплечая непарная хромосома, не имеющая гомолога, и маленькая палочковидная хромосома, встречающаяся только в кариотипе мужчин. Таким образом, кариотип человека содержит 22 пары хромосом, одинаковых у мужского и женского организмов, и одну пару хромосом, по которой различаются оба пола.

Хромосомы, по которым мужской и женский пол отличаются друг от друга, называют половыми или гетерохромосомами. Половые хромосомы у женщин одинаковы, их называют Х-хромосомами. У мужчин имеются одна Х-хромосома и одна У-хромосома. При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. При этом все яйцеклетки имеют по одной Х-хромосоме.

Пол, который образует гаметы, одинаковые по половой хромосоме, называют гомогаметным и обозначают как XX.

При сперматогенезе получаются гаметы двух сортов: половина несёт Х-хромосому, половина - У-хромосому.

Пол, который формирует гаметы, неодинаковые по половой хромосоме, называют гетерогаметным и обозначают как ХУ.

У млекопитающих, в частности человека, некоторых насекомых, например дрозофилы, и ряда других организмов гомогаметен женский пол; у бабочек, пресмыкающихся, птиц - мужской. Так, кариотип петуха обозначается как XX, а кариотип курицы - ХУ.

У человека решающую роль в определении пола играет У-хромосома. Если яйцеклетка оплодотворяется сперматозоидом, несущим Х-хромосому, развивается женский организм. Следовательно, женщины имеют одну Х-хромосому от отца и одну Х-хромосому от матери. Если яйцеклетка оплодотворяется сперматозоидом, несущим У-хромосому, развивается мужской организм. Мужчина (ХУ) получает Х-хромосому только от матери. Этим обусловлена особенность наследования генов, расположенных в половых хромосомах. Наследование признаков, гены которых находятся в X- или Y-хромосомах, называют наследованием, сцепленным с полом. Распределение этих генов в потомстве должно соответствовать распределению половых хромосом в мейозе и их сочетанию при слиянии половых клеток в процессе оплодотворения.

Рассмотрим наследование генов, расположенных в Х-хромосоме. Следует иметь в виду, что в половых хромосомах могут находиться и гены, не участвующие в развитии половых признаков. Так, Х-хромосома дрозофилы включает ген, от которого зависит окраска её глаз. Х-хромосома человека содержит ген, определяющий свёртываемость крови (Я). Его рецессивный аллель (h) вызывает тяжёлое заболевание, характеризующееся пониженной свёртываемостью крови, - гемофилию. В этой же хромосоме находятся гены, обусловливающие слепоту к красному и зелёному цветам (дальтонизм), форму и объём зубов, синтез ряда ферментов и т. д.

При сцеплении с полом может проявиться и рецессивный ген, имеющийся в генотипе в единственном числе. Это происходит, когда он находится в Х-хромосоме гетерогаметного организма. При кариотипе ХУ рецессивный ген в Х-хромосоме проявляется фенотипически, поскольку У-хромосома не гомологична Х-хромосоме и не содержит доминантного аллеля. Наследование сцепленного с полом гена дальтонизма изображено на рисунке 41.

Наследование гемофилии представлено на следующей схеме на примере брака женщины - носительницы гена гемофилии (ХНХh) со здоровым мужчиной:

Половина мальчиков от такого брака будет страдать гемофилией.

При локализации какого-либо гена в Y-хромосоме признаки передаются только от отца к сыну.

В настоящее время изучено наследование многих нормальных и патологических (от греч. патос - болезнь) признаков у человека.

Вопросы для повторения и задания

  1. Какие хромосомы называют половыми?
  2. Какой пол называют гомогаметным и какой - гетерогаметным?
  3. Что такое сцепление генов с полом? Приведите примеры наследования гена, сцепленного с полом.
  4. Почему проявляются в виде признака рецессивные гены, локализованные в Х-хромосоме человека? Используя дополнительные источники информации, приведите примеры доминантных и рецессивных признаков у человека, сцепленных с полом.
  5. Объясните, почему пол организма обычно определяется в момент оплодотворения, т. е. при слиянии сперматозоида и яйцеклетки.
  6. Решите задачу. У молодых цыплят нет заметных половых различий, а между тем экономически целесообразно устанавливать для будущих петушков и курочек различные режимы кормления. Известно, что ген, определяющий окраску оперения, локализован в Х-хромосоме, причём рябая окраска доминирует над белой, и различие между окрасками заметно сразу же после вылупления. Какое надо поставить скрещивание, чтобы можно было сразу разделить вылупившихся цыплят по полу?

Глава 8. Закономерности изменчивости

Изменчивостью называют способность живых организмов приобретать новые признаки и свойства. Изменчивость отражает взаимосвязь организма с внешней средой. Различают наследственную (генотипическую) и ненаследственную (модификационную, или фенотипическую) изменчивость.

21. Наследственная (генотипическая) изменчивость

Вспомните! Генотип Ген Кроссинговер Кариотип Полиплоидия

К наследственной изменчивости относят такие изменения признаков организма, которые определяются генотипом и сохраняются в ряду поколений. Иногда это крупные, хорошо заметные изменения, например коротконогость у овец (см. рис. 58), отсутствие оперения у кур (рис. 42, 43), раздвоенные пальцы у кошек, отсутствие пигмента (альбинизм), короткопалость (рис. 44) или полидактилия у человека (рис. 45). Вследствие внезапных изменений, стойко передающихся по наследству, возникли карликовый сорт душистого горошка, растения с махровыми цветками и многие другие признаки. Чаще же это мелкие, едва заметные отклонения от нормы.

Наследственные изменения генетического материала называют мутациями (от лат. мутацио - изменение).

Дарвин называл наследственную изменчивость неопределённой или индивидуальной изменчивостью, подчёркивая тем самым её случайный, ненаправленный характер и относительную редкость возникновения. Мутации возникают вследствие изменения структуры гена или хромосом и служат источником генетического разнообразия внутри вида. Благодаря постоянному мутационному процессу возникают различные варианты генов, составляющие резерв наследственной изменчивости. Однако разнообразие живых организмов, уникальность каждого генотипа обусловлены комбинативной изменчивостью - перегруппировкой хромосом при половом размножении и участков хромосом в процессе кроссинговера. При этом структура самих генов и хромосом остаётся той же, что и у родителей, но меняются сочетания наследственных задатков и характер их взаимодействия в генотипе.

Характер проявления мутаций. Различают мутации доминантные и рецессивные. Большинство из них рецессивны и не проявляются у гетерозиготных организмов. Такие мутации составляют скрытый резерв наследственной изменчивости. Обладатели вредных доминантных мутаций часто оказываются нежизнеспособными и погибают на самых ранних этапах индивидуального развития.

Место возникновения мутаций. Мутации подразделяют на генеративные и соматические. Мутация, возникшая в половых клетках, не влияет на проявления признаков данного организма, а обнаруживается только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся - мутировавший - ген, мутации могут передаваться потомству. Такие мутации называют соматическими. В растениеводстве соматические мутации используют для выведения новых сортов культурных растений. Пример соматической мутации у млекопитающих - изредка встречающееся чёрное пятно на фоне коричневой окраски шерсти у каракулевых овец.

Уровни возникновения мутаций. Изменения, обусловленные заменой одного или нескольких нуклеотидов в пределах одного гена, называют генными или точковыми мутациями. Они влекут за собой изменение строения белков. В полипептидной цепи изменяется последовательность аминокислот и, как следствие, нарушается нормальное функционирование белковой молекулы.

Изменения структуры хромосом называют хромосомными мутациями. Эти мутации могут возникать вследствие утраты части хромосомы. Если в утраченный участок входят жизненно важные гены, то такая мутация может привести организм к гибели. Потеря небольшой части 21-й хромосомы у человека служит причиной развития у детей тяжёлого врождённого заболевания - острого лейкоза. В других случаях оторвавшийся участок может присоединиться к негомологичной хромосоме, в результате чего возникает новая комбинация генов, изменяющая характер их взаимодействия.

Изменения числа хромосом (уменьшение или увеличение) называют геномными мутациями. Вследствие нерасхождения какой-либо пары гомологичных хромосом в мейозе одна из образовавшихся гамет содержит на одну хромосому меньше, а другая - на одну хромосому больше, чем в нормальном гаплоидном наборе. Слияние с нормальной гаплоидной гаметой при оплодотворении приводит к образованию зиготы с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для данного вида. В таких случаях нарушение генного баланса сопровождается нарушением развития. Известный пример - болезнь Дауна у человека, причина которой - присутствие в кариотипе трёх хромосом 21-й пары. Болезнь Дауна проявляется значительным снижением жизнеспособности, недостаточным умственным развитием и рядом других расстройств.

У простейших и у растений часто наблюдается увеличение числа хромосом, кратное гаплоидному набору. Такое изменение хромосомного набора носит название полиплоидии. Степень её бывает различной. У простейших число хромосом может увеличиваться в несколько сотен раз. Широко распространена полиплоидия у высших растений. С увеличением числа хромосомных наборов в кариотипе возрастает надёжность генетической системы, уменьшается опасность снижения жизнеспособности в случае мутации. Полиплоидия нередко повышает жизнеспособность, плодовитость и другие жизненные свойства. В растениеводстве искусственно получают полиплоидные сорта культурных растений, которые отличаются высокой продуктивностью (рис. 46). У высших животных, например у млекопитающих, полиплоидия встречается лишь в некоторых тканях, например в клетках печени.

Свойства мутаций. Мутации наследственны, т. е. стойко передаются из поколения в поколение. Одни и те же мутации могут возникать у разных организмов, относящихся к одному виду. По своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.

Способность к мутированию - одно из свойств гена. Однако существуют внешние факторы, значительно увеличивающие частоту мутаций. К ним относятся, например, все виды ионизирующих излучений, соли тяжёлых металлов и многие другие.

Искусственное получение мутаций имеет и практическое значение, так как повышает генетическое разнообразие внутри популяции или вида, «поставляя» материал для селекционеров.

Вопросы для повторения и задания

  1. Какие формы изменчивости вам известны?
  2. Что такое мутация? Чем комбинативная изменчивость отличается от мутационной?
  3. Какие структуры клетки перестраиваются при мутационной изменчивости?
  4. Сравните генеративные и соматические мутации. Что у них общего и чем они принципиально отличаются?
  5. Составьте и заполните таблицу «Многообразие мутаций (по уровню возникновения)».
  6. Какие критерии положены в основу классификации мутаций, представленных в учебнике? Предложите свои варианты классификаций мутаций.
  7. Что такое полиплоидия? Почему среди высших животных не существует полиплоидных организмов?
  8. Как можно вызвать увеличение частоты мутаций?
  9. Объясните, почему Чарлз Дарвин называл наследственную изменчивость неопределённой.

22. Ненаследственная (фенотипическая) изменчивость

Вспомните! Внешняя среда Генотип Фенотип

Каждый организм развивается и обитает в определённых условиях, испытывая на себе действие различных факторов внешней среды - температуры, освещённости, влажности, количества и качества пищи; кроме того, он вступает во взаимоотношения с другими организмами своего и других видов. Все эти факторы могут изменять морфологические и физиологические свойства организмов, т. е. их фенотип.

Если у гималайского кролика на спине выщипать белую шерсть и наложить холодную повязку, на этом месте вырастет чёрная шерсть (рис. 47). Если чёрную шерсть удалить и наложить тёплую повязку, вырастет белая шерсть. При выращивании гималайского кролика при температуре +30 °С вся шерсть у него будет белая. У потомства двух таких белых кроликов, выращенного в нормальных условиях, будет обычное распределение пигмента.

Многие признаки изменяются в процессе роста и развития под влиянием факторов внешней среды. Такие изменения признаков не наследуются.

Рис. 47. Фенотипическое изменение окраски шерсти гималайского кролика под влиянием различных температур

У лотоса (рис. 48) и водяного ореха (рис. 49) подводные и надводные листья имеют разную форму: у лотоса в воде длинные тонкие листья ланцетовидной формы, а у водяного ореха - изрезанные - перистые.

Под действием ультрафиолетовых лучей у всех людей (если они не альбиносы) кожа покрывается загаром благодаря накоплению в ней гранул пигмента меланина.

Таким образом, на действие определённого фактора внешней среды каждый вид организмов реагирует специфически и реакция (изменение признака) оказывается сходной у всех особей данного вида.

Вместе с тем изменчивость признака под влиянием условий внешней среды не беспредельна. Степень варьирования признака, или, другими словами, пределы изменчивости, называют нормой реакции. Широта нормы реакции обусловлена генотипом и зависит от значения признака в жизнедеятельности организма. Узкая норма реакции свойственна таким важным признакам, как, например, размеры сердца или головного мозга. В то же время количество жира в организме изменяется в широких пределах. Мало варьирует строение цветка у растений, опыляемых насекомыми, зато очень изменчивы размеры листьев. Знание нормы реакции организма, пределов его модификационной изменчивости имеет большое значение в селекционной практике при «конструировании» новых форм растений, животных и микроорганизмов, полезных человеку. Особенно важно это для практики сельского хозяйства, цель которой - повышение продуктивности растений и животных путём не только внедрения новых селекционных форм - пород и сортов, но и максимального использования возможностей уже существующих пород и сортов. Знание закономерностей модификационной изменчивости необходимо и в медицине для поддержания и развития человеческого организма в пределах нормы реакции.

Вопросы для повторения и задания

  1. Как среда влияет на проявление признака? Приведите примеры.
  2. Докажите на примерах ненаследуемость изменений признака, вызванных действием условий внешней среды.
  3. Что такое норма реакции? От чего зависит её широта? Приведите примеры признаков с широкой и узкой нормой реакции.
  4. Перечислите свойства фенотипической изменчивости. Сравните её с генотипической изменчивостью. Оформите результаты сравнения в виде таблицы.
  5. Приведите примеры известных вам из жизни приобретённых признаков. Объясните, почему они не наследуются.

Глава 9. Селекция растений, животных и микроорганизмов

В процессе становления человека как вида ему пришлось не только защищаться от диких зверей, устраивать убежища и т. п., но и обеспечивать себя пищей. Поиск съедобных растений и охота - не очень надёжные источники пищи, и голод был постоянным спутником первобытных людей. Естественный отбор на интеллект и развитие общественных отношений в первобытном людском стаде привели к формированию для человека искусственной среды обитания, уменьшающей его зависимость от природных условий. При этом одним из крупнейших достижений стало создание постоянного источника продуктов питания путём одомашнивания диких животных и возделывания растений.

Таким образом, фенотипическая изменчивость характеризуется следующими основными свойствами: 1) ненаследуемость; 2) групповой характер изменений; 3) зависимость изменений от действия определённого фактора среды; 4) обусловленность пределов изменчивости генотипом, т. е. при одинаковой направленности изменений степень их выраженности у разных организмов различна.

Выведение разнообразных пород животных и сортов растений стало возможным благодаря существованию у диких видов комбинативной наследственной изменчивости как результата полового размножения, а также искусственному отбору, применяемому человеком. Животные и растения, выведенные человеком, резко отличаются от своих диких предков по ряду качеств. У культурных форм сильно развиты отдельные признаки, ненужные или даже вредные для существования в естественных условиях, но полезные для человека. Например, способность некоторых пород кур нести 300 и более яиц в год лишена биологического смысла, поскольку такое количество яиц курица не может насиживать. Можно привести множество подобных примеров, относящихся не только к хозяйственно полезным признакам, но и к декоративным - у голубей, бойцовых петухов.

Размеры и продуктивность культурных растений выше, чем у родственных диких видов, но вместе с тем они лишены средств защиты от неблагоприятных условий окружающей среды и от поедания: горьких или ядовитых веществ, шипов, колючек.

Для более полного удовлетворения пищевых и технических потребностей человека создаются всё новые сорта растений и породы животных с заранее заданными свойствами. Разработка теории и методов создания и совершенствования пород животных и сортов растений представляет предмет особой науки - селекции.

23. Центры многообразия и происхождения культурных растений

Вспомните! Дикорастущие злаки Культурные злаки Селекция Генофонд

Генофонд существующих пород животных или сортов растений, естественно, беднее по сравнению с генофондом исходных диких видов. Между тем успех селекционной работы зависит главным образом от генетического разнообразия исходной группы растений или животных. Поэтому при выведении новых сортов растений и пород животных очень важны поиски и выявление полезных признаков у диких форм. С целью изучения многообразия и географического распространения культурных растений выдающийся русский генетик и селекционер Н. И. Вавилов в 1920- 1940 гг. организовал многочисленные экспедиции как на территории нашей страны, так и во многие зарубежные страны. Во время этих экспедиций были изучены мировые растительные ресурсы и собран огромный семенной материал, который в дальнейшем использовали для селекционной работы. Н. И. Вавилов сделал важные обобщения, послужившие крупным вкладом в теорию селекции; он выделил семь центров происхождения культурных растений, из которых они расселились по всему миру. Это Южноазиатский тропический центр - родина 50% культурных растений, Восточноазиатский, из которого расселились по миру 20% культурных растений, Юго-Западноазиатский (14% культурных растений, в том числе пшеница, рожь, бобовые и др.), Средиземноморский (11% культурных растений, в том числе капуста, сахарная свёкла, чечевица), Абиссинский - родина ячменя, бананов, кофейного дерева и др., Центральноамериканский, откуда пошли кукуруза, хлопок, тыква, табак, и, наконец, Южноамериканский - родина картофеля, ананаса и др.

История вавиловской коллекции включает и драматические страницы. В 1940 г. её создатель был арестован по ложному обвинению и в 1943 г. погиб от истощения в саратовской тюрьме. Коллекция хранилась во Всесоюзном институте растениеводства в Ленинграде. Во время фашистской блокады города сотрудники института, голодавшие вместе со всеми ленинградцами, сумели сохранить всю коллекцию до последнего зёрнышка.

Работа по созданию семенных коллекций сортов культурных растений и их дикорастущих предков, начало которой положил Н. И. Вавилов, продолжается и в настоящее время. В нашей стране эта коллекция включает более 320 тыс. образцов. Сюда входят дикие виды, сородичи культурных растений, старые местные сорта, всё лучшее и новое, что создано за последнее время усилиями селекционеров всех стран мира. Из мирового генофонда ученые отбирают генетические источники хозяйственно ценных признаков: урожайности, скороспелости, устойчивости к болезням и вредителям, засухоустойчивости, устойчивости к полеганию и др. Современные генетические методы дают возможность добиваться в селекции растений очень крупных успехов. Так, использование ценных генов дикого эфиопского ячменя позволило создать выдающийся по продуктивности сорт ярового ячменя Одесский-100.

Вопросы для повторения и задания

  1. Чем отличаются одомашненные животные и культурные растения от диких?
  2. Как вы считаете, какая наука является теоретической основой селекции? Объясните свой выбор.
  3. Какое значение для селекции имеет знание центров происхождения культурных растений?
  4. Какие центры происхождения культурных растений вам известны?
  5. Определите, какие центры происхождения являются родиной культурных растений, выращиваемых в вашем регионе.
  6. Объясните в классе, почему одомашнивание диких животных и возделывание культурных растений стало поворотным пунктом в развитии человечества.
  7. Почему для успешной селекционной работы необходимо знать биологические свойства исходных диких видов?

24. Селекция растений и животных

Вспомните! Порода Сорт. Генофонд Гомозиготные организмы Полиплоиды

Основная задача селекции - создание высокопродуктивных пород животных, сортов растений и штаммов микроорганизмов, наилучшим образом удовлетворяющих пищевые, эстетические и технические потребности человека.

Породой и сортом (чистой линией) называют искусственно созданную человеком популяцию организмов, которая характеризуется специфическим генофондом, наследственно закреплёнными морфологическими и физиологическими признаками, определённым уровнем и характером продуктивности.

Каждой породе или сорту свойственна определённая норма реакции. Так, куры породы белый леггорн отличаются высокой яйценоскостью. При улучшении условий содержания и кормления яйценоскость кур повышается, а масса их практически не меняется. Фенотип (в том числе продуктивность) наиболее полно проявляется лишь при определённых условиях, поэтому для каждого района с теми или иными климатическими условиями, агротехническими приёмами и т. д. необходимо иметь свои сорта и породы.

Все эти факторы необходимо учитывать при интенсивном сельскохозяйственном производстве, цель которого - максимальное производство продуктов питания при минимальных затратах средств на единицу продукции. Интенсификация сельского хозяйства стала актуальной задачей нашего времени в связи с острой нехваткой продуктов питания в некоторых регионах мира. Особенно большое значение имеет дефицит белка, без которого невозможно нормальное развитие. Решается эта проблема разными способами, включающими совершенствование агротехники, подбор пород животных и сортов культурных растений, наиболее продуктивных в данных условиях, производство для животных кормового белка из нетрадиционных источников и т. д. К числу таких способов относится и широкое использование современных методов селекции.

Отбор и гибридизация . Основными методами селекции являются отбор и гибридизация. В растениеводстве по отношению к перекрёстноопыляющимся растениям нередко применяют массовый отбор. При таком отборе в посеве сохраняют только растения с нужными качествами. При повторном посеве снова отбирают растения с определёнными признаками. Так были выведены сорта ржи (например, сорт Вятка). Сорт, получаемый этим способом, генетически неоднороден, и отбор время от времени приходится повторять. Индивидуальный отбор сводится к выделению отдельных особей и получению от них потомства. Индивидуальный отбор приводит к получению чистой линии - группы генетически однородных (гомозиготных) организмов. Путём отбора были выведены многие ценные сорта культурных растений (рис. 50).

Рис. 50. Полученный в результате селекционной работы низкостебельный сорт пшеницы с улучшенным качеством клейковины (справа) и исходный сорт(слева)

Для внесения в генофонд создаваемого сорта растений или породы животных ценных генов и получения оптимальных комбинаций признаков применяют гибридизацию с последующим отбором. Так, некий сорт пшеницы может иметь прочный стебель и быть устойчивым к полеганию, но в то же время его легко поражает ржавчина. Другой же сорт, с тонкой и слабой соломиной, устойчив к ржавчине. При скрещивании этих двух пшениц в потомстве обнаруживаются различные комбинации, в том числе у части растений сочетаются признаки устойчивости к полеганию и к ржавчине. Такие гибриды отбирают и используют для посева.

В животноводстве из-за малого числа потомков широко используют индивидуальный отбор с тщательным учётом хозяйственно полезных признаков и гибридизацию. У сельскохозяйственных животных проводят или близкородственное скрещивание для перевода большинства генов породы в гомозиготное состояние, или неродственное скрещивание между породами или даже видами. Неродственное скрещивание имеет целью комбинацию нескольких полезных признаков. Такое скрещивание при последующем строгом отборе приводит к улучшению свойств породы (рис. 51).

Рис. 51. Отбор по полезным для человека признакам приводит к изменению исходного дикого вида. Вверху справа - дикий кабан, слева и внизу - чистопородный одомашненный боров

При скрещивании разных пород животных или сортов растений, а также при межвидовых скрещиваниях гибриды первого поколения отличаются повышенной жизнеспособностью и мощным развитием (рис. 52). Это явление, получившее название гетерозиса или гибридной силы, объясняется переходом многих генов в гетерозиготное состояние и взаимодействием благоприятных доминантных генов.

Одно из выдающихся достижений современной селекции - разработка способов преодоления бесплодия межвидовых гибридов. Впервые это удалось осуществить в начале XX в. советскому генетику Г. Д. Карпеченко при скрещивании редьки и капусты. Это вновь созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки его состояли из двух половинок, из которых одна напоминала стручок капусты, другая - редьки.

Впоследствии удалось получить гибрид пшеницы с пыреем. На основе этого гибрида был выведен новый сорт пшеницы - зерно-кормовой, который за три укоса в сезон даёт до 300-450 ц/га зелёной массы. Методами отдалённой гибридизации получена также новая зерновая и кормовая культура - гибрид пшеницы с рожью. Этот гибрид, названный тритикале, удачно сочетает ценные признаки пшеницы и ржи, давая большие урожаи зерна и зелёной массы с высокими питательными качествами.

Нередко в растениеводстве получают и полиплоидные растения, отличающиеся более крупными размерами, высокой урожайностью и более активным синтезом органических веществ (рис. 53). Широко распространены полиплоидные сорта клевера, сахарной свёклы, турнепса, ржи, гречихи, масличных растений.

  1. Что называют породой; сортом?
  2. Какие основные методы селекции вы знаете?
  3. Сравните массовый отбор и индивидуальный отбор. В чём их сходство и отличия?
  4. С какой целью в селекционной работе производится скрещивание?
  5. Какие межвидовые гибриды вам известны?
  6. Какими особенностями отличаются полиплоидные сорта культурных растений?
  7. Чем отличаются методы одомашнивания, применявшиеся первобытным человеком, от современных?
  8. Какие породы животных и сорта растений характерны для вашей местности? Какими особыми признаками они обладают?
  9. Если у вас есть домашние питомцы, подготовьте сообщение о породе, к которой они относятся. Как была выведена эта порода? В чём её особенности и преимущества? Какие условия необходимы для содержания животных такой породы?
  10. Объясните в классе, почему в селекции растений и животных применяют разные методы.
  11. Согласны ли вы с утверждением, что исходный материал местного происхождения представляет большую ценность для селекционной работы? Объясните свою точку зрения.

25. Селекция микроорганизмов

Вспомните! Прокариоты Бактерии Витамины Незаменимые аминокислоты Интерферон Инсулин

Микроорганизмы интенсивно используются в самых разнообразных технологических процессах. Прокариоты и одноклеточные эукариоты (в основном грибы и бактерии) с каждым годом всё шире применяются в разных отраслях народного хозяйства: в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. В связи с этим развивается промышленная микробиология и ведётся интенсивная селекция новых штаммов микроорганизмов с повышенной продуктивностью веществ, необходимых человеку. Такие штаммы имеют большое значение для производства кормового белка, ферментных и витаминных препаратов, антибиотиков (рис. 54), используемых в пищевой промышленности, медицине, животноводстве.

Рис. 54. На графике показано относительное увеличение продуктивности штаммов микроорганизмов, выведенных человеком, по сравнению с исходными дикими формами. Левый столбик - продуктивность дикого штамма, правый - выведенного человеком.

Например, микроорганизмы применяют для получения витаминов В2, В12. Дрожжевые грибы, растущие на гидролизатах древесины или за счёт потребления парафинов, служат источником кормового белка. В дрожжах содержится до 60% белков. Применение этих высокобелковых концентратов позволяет дополнительно получать до 1 млн т мяса в год. Важное значение в народном хозяйстве имеет производство незаменимых аминокислот с помощью микроорганизмов. Недостаток в пище этих соединений резко тормозит рост. В традиционных для животных кормах незаменимых аминокислот мало, и для нормального питания скота приходится увеличивать рационы. Добавление же 1 т лизина - аминокислоты, полученной путём микробиологического синтеза, - позволяет сэкономить десятки тонн фуража.

Технологию получения необходимых человеку продуктов из живых клеток или с их помощью называют биотехнологией. Биотехнология развивается чрезвычайно быстро. За последние десятилетия возник ряд совершенно новых производств, основанных на использовании различных бактерий и грибов.

Микроорганизмы «работают» в металлургии. Обычная технология извлечения металлов из руд не позволяет широко использовать бедные или сложные по составу руды: в результате их переработки образуются огромные скопления отходов, в атмосферу выбрасываются ядовитые газы. Биотехнология металлов основана на способности бактерий окислять минералы и переводить металлы в растворимые соединения. При окислении бактериями сульфидных минералов большинство цветных металлов и редких элементов переходит в раствор. Таким путём, например, во всём мире получают сотни тысяч тонн меди в год, причём стоимость её в 2-3 раза ниже, чем при добыче традиционным путём. С помощью бактерий из руды извлекают уран, золото и серебро, удаляют такую вредную примесь, как мышьяк.

Микроорганизмы способны при благоприятных условиях непрерывно синтезировать белки. Учёные разработали способы внедрения в бактериальную клетку определённых генов, в том числе генов человека. Такие способы получили название генной инженерии. Бактериальная клетка синтезирует белок, кодируемый чужим для неё геном, в больших количествах. Так получают сейчас интерфероны - белки, подавляющие размножение вирусов, и инсулин, регулирующий уровень глюкозы в крови.

Вопросы для повторения и задания:

  1. Какое значение для народного хозяйства имеет селекция микроорганизмов?
  2. Приведите примеры промышленного получения и использования продуктов жизнедеятельности микроорганизмов.
  3. Что такое биотехнология?
  4. Подумайте и приведите пример, свидетельствующий о том, что биотехнологические производства используются человечеством многие сотни и даже тысячи лет.
  5. Дайте определение понятия «генная инженерия».
  6. Какое понятие более широкое - «биотехнология» или «генная инженерия»? Объясните свою точку зрения.
  7. Обсудите в классе, какие перспективы открываются перед человечеством при использовании микроорганизмов в сельском хозяйстве.
  8. Под руководством учителя вместе с одноклассниками подготовьте выставку «Микроорганизмы на службе у человека».
  9. Подготовьте сообщение «Вклад отечественных учёных (Н. И. Вавилов, Г. Д. Карпеченко, В. И. Мичурин и др.) в развитие селекции».

ОГЛАВЛЕНИЕ

Предмет и история развития генетики

Генетика (от греч. genesis- происхождение) - наука о наследственности и изменчивости организмов. Термин «генетика» предложил в 1906 г. У. Бэтсон. Наследственность - свойство живых существ обеспечивать материальную и функциональную преемственность между поколениями, а также обусловливать специфический характер индивидуального развития в определенных условиях внешней среды. Наследственность - это воспроизведение жизни (Н. П. Дубинин). Изменчивость - это возникновение различий между организмами по ряду признаков и свойств.

Наследственность, изменчивость и отбор -основа эволюции. Благодаря им возникло огромное разнообразие живых существ йа Земле. Мутации поставляют первичный материал для эволюции. В результате отбора сохраняются положительные признаки и свойства, которые благодаря наследственности передаются из поколения в поколение. Знание закономерностей наследственности и изменчивости способствует более быстрому созданию новых пород животных, сортов растений и штаммов микроорганизмов.

С. М. Гершензон выделяет четыре основные теоретические проблемы, изучаемые генетикой:

1)хранения генетической информации (где и каким образом закодирована генетическая информация);

2)передачи генетической информации от клетки к клетке, от поколения к поколению;

3)реализации генетической информации в процессе онтоге неза;

4)изменения генетической информации в процессе мутаций. Бурное развитие генетики связано с тем, что она откры

Законы наследования.Общая терминология.Моногибридное скрещивание.

Законы наследования

Диплоидный хромосомный набор состоит из пар гомологичных хромосом. Одна хромосома из каждой пары унаследована от материнского организма, другая - от отцовского. В результате каждый ген на гомологичной хромосоме имеет соответствующий ген, локализованный в том же месте на другой гомологичной хромосоме. Такие парные гены называются аллельными, или аллелями. Аллели могут быть абсолютно идентичными, но возможны и вариации в их строении Когда известно множество аллелей, представляющих собой альтернативные варианты гена, локализованного в определенном участке хромосомы, говорят о множественном аллелизме. В любом случае у нормального диплоидного организма могут присутствовать только два аллеля, поскольку имеются только пары гомологичных хромосом.


Первый закон Менделя
Рассмотрим ситуацию, при которой скрещиваются организмы, различающиеся по одной паре признаков (моногибридное скрещивание) Пусть таким признаком будет цвет глаз. У одного родителя это аллели А, соответственно его генотип для таких аллелей - АА. При данном генотипе цвет глаз - карий. У другого родителя на обеих хромосомах находится аллель а (генотип аа), цвет паз - голубой. При образовании половых клеток гомологичные хромосомы расходятся в разные клетки. Поскольку у родителей Оба аллеля одинаковы, то они образуют только один сорт половых клеток (гамет). У одного родителя гаметы содержат только аллель А, у другого только аллель а. Такие организмы называются гомозиготными по данной паре генов.

В первом поколении (F1) у потомства будет одинаковый генотип Аа и одинаковый фенотип - карие глаза. Явление, при котором в фенотипе проявляется только один признак из альтернативной пары называется доминированием, а ген, контролирующий данный признак-доминантным. Аллель а в фенотипе не проявляется, присутствуя в генотипе в «скрытом» виде. Такие аллели получили название рецессивных. В данном случае выполняется правило единообразия гибридов первого поколения: у всех гибридов одинаковые генотип и фенотип.

Второй закон Менделя.
Второй закон Менделя, или закон независимого распределения генов. Он установлен посредством анализа наследования при дигибридном и полигибридном скрещивании, когда скрещиваемые особи отличаются по двум парам аллелей и более. Независимое распределение генов происходит потому, что при образовании потовых клеток (гамет) гомологичные хромосомы из одной пары расходятся независимо от других пар. Поэтому второй закон Менделя в отличие от первого действует только в случаях, когда анализируемые пары генов расположены на разных хромосомах.

Закон независимого комбинирования, или третий закон Менделя . Изучение Менделем наследования од­ной пары аллелей дало возможность установить ряд важных генетических закономерностей: явление доми­нирования, неизменность рецессивных аллелей у гибри­дов, расщепление потомства гибридов в отношении 3:1, а также предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельнои пары. Одна­ко организмы различаются по многим генам. Устано­вить закономерности наследования двух пар альтерна­тивных признаков и более можно путем дигибридного или полигибридного скрещивания.

Моногибридное скрещивание

Фенотип и генотип.Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.

Признак -любая особенность организма, т. е. любое отдельное его качество или свойство, по которому можно различить две особи. У растений это форма венчика (например, симметричный-асимметричный) или его окраска (пурпурный-белый), скорость созревания растений (скороспелость-позднеспелость), устойчивость или восприимчивость к заболеванию и т. д.

Совокупность всех признаков организма, начиная с внешних и кончая особенностями строения и функционирования клеток, тканей и органов, называется фенотипом. Этот термин может употребляться и по отношению к одному из альтернативных признаков.

Признаки и свойства организма проявляются под контролем наследственных факторов, т. е. генов. Совокупность всех генов организма называют генотипом.

Примерами моногибридного скрещивания, проведенного Г. Менделем, могут служить скрещивания гороха с такими хорошо заметными альтернативными признаками, как пурпурные и белые цветки, желтая и зеленая окраска незрелых плодов (бобов), гладкая и морщинистая поверхность семян, желтая и зеленая их окраска и др.

Единообразие гибридов первого поколения (первый закон Менделя). При скрещивании гороха с пурпурными и белыми цветками Мендель обнаружил, что у всех гибридных растений первого поколения (F 1) цветки оказались пурпурными. При этом белая окраска цветка не проявлялась (рис. 3.1).

Мендель установил также, что все гибриды F 1 оказались единообразными (однородными) по каждому из семи исследуемых им признаков. Следовательно, у гибридов первого поколения из пары родительских альтернативных признаков проявляется только один, а признак другого родителя как бы исчезает. Явление преобладания у гибридов F 1 признаков одного из родителей Мендель назвал доминированием, а соответствующий признак - доминантным. Признаки, не проявляющиеся у гибридов F 1 он назвал рецессивными.

Поскольку все гибриды первого поколения единообразны, это явление было названо К. Корренсом первым законам Менделя, или законом единообразия гибридов первого поколения, а также правилом доминирования.

Законы наследования.Полигибридное скрещивание.

Законы Менделя - это принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя. Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности

План:

3. Взаимодействие генов.

Наследственность

Изменчивость

Наследование наследственной информации ) от поколения к поколению.

Ген

Аллельные гены

Локус

Гомологичные хромосомы

Альтернативные признаки ).

Гомозиготный организм АА или аа ).

Гетерозиготный организм

Гемизиготный организм

Доминантный признак в гетерозиготе ).

Доминантный ген – преобладающий ген (А или В ).

Рецессивный признак

Рецессивный ген аа или вв ).

Генотип

Фенотип

Генофонд



♀ женский пол;

♂ мужской пол.

Моногибридное скрещивание

АА и аа ).

Введем буквенные обозначения:

А - ген желтой окраски

а - ген зеленой окраски

Р: ♀ АА × ♂ аа

G: А а

Аа ).



Р:♀ А А ×♂ а а


G: А А а а

А

Аа

I Закон Менделя (закон единообразия):

Р: ♀ Аа ×♂ Аа

F: АА, Аа, Аа, аа

По фенотипу: 3: 1

По генотипу: 1: 2: 1

Аа А и гаметы с геном а.


2 Закон Менделя (закон расщепления):

Дигибридное скрещивание

Введем буквенные обозначения:

А - ген желтого цвета, а - зеленого

В - ген гладкой формы, в – морщинистой

Р: ♀ ААВВ × аавв


G: АВ ав

F 1: Аа Вв

Желтые гладкие

Желтые морщинистые

Зеленые гладкие

Зеленые морщинистые

Р: ♀ АаВв × АаВв

G: АВ Ав аВ ав АВ Ав аВ ав

♀♂ АВ Ав аВ ав
АВ ААВВ ААВв АаВВ АаВв
Ав ААВв ААвв АаВв Аавв
аВ АаВВ АаВв ааВВ ааВв
ав АаВв Аавв ааВв Аавв

9/16 А* В* - желтые гладкие

3/16 А* вв - желтые морщинистые

3/16 аа В* - зеленые гладкие

1/16 аавв - зеленые морщинистые

3 Закон Менделя

Анализирующее скрещивание

желтый горох аа – зеленый

аа) АА

Р 1: АА × аа Р 2 : Аа × аа


АЛЛЕЛЬНЫХНЕАЛЛЕЛЬНЫХ

5.Кодоминирование

Полное доминирование

Р: АА аа А – ген карих глаз

(карие) (голубые) а – ген голубых глаз

G: а А

100% - кареглазые

Неполное доминирование – когда один ген полностью подавляет другой и появляется промежуточный признак. Например, наследование формы волос у человека.

АА – курчавые волосы

Аа – волнистые волосы

аа – прямые волосы

Р: АА аа

(курчавые) (волнистые)

G: А а

100% - волнистые

Сверхдоминирование – более сильное проявление признака в гетерозиготе, а не в гомозиготе.

АА, Аа, аа – гибридная мощь (гетерозис).

Например, продолжительность жизни у мушки дрозофилы.

АА – нормальная продолжительность жизни

Аа – увеличенная продолжительность жизни

аа – летальный исход.

Множественный аллелизм – наличие гена в популяции более чем в двух формах.

Ген может находиться не в двух, а в нескольких аллельных состояниях и образовывать серию множественных аллелей. Примером может служить наследование окраски шерсти у кроликов. Окраска может быть черной, шиншилловой (смесь белых и черных волосков), гималайской (на фоне общей белой окраски черные кончики ушей, лап, хвоста и мордочки), и белой (альбинизм - полное отсутствие пигментации шерсти). Развитие всех этих четырех типов окраски обусловлено четырьмя аллелями, локализующимися в одном и том же локусе.

С – ген черной окраски, доминирует над остальными членами серии;

c ch – ген шиншилловой окраски, доминирует над генами гималайской и белой окраски, но рецессивен по отношению к гену черной окраски;

c h – ген гималайской окраски, доминантен по отношению к белой но рецессивен по отношению к черной и шиншилловой;

с – ген альбинизма, рецессивен по отношению всех членов серии.

С > c ch > c h > c ,

т. е. члены одной серии аллелей могут находиться в различных доминантно- рецессивных отношениях друг с другом.

У каждой конкретной особи может быть лишь по две аллели из серии:

с с ch , С с ch , С с h , с с h .

Какую окраску будут иметь кролики? (шиншилловую, черную, черную, гималайскую).

У человека примером множественных аллелей является наследование групп крови системы АВО.

Например: Наследование групп крови системы АВ0.

В зависимости от антигенов, которые находятся на поверхности эритроцитов, все люди делятся на четыре группы. У одних людей на поверхности эритроцитов нет антигенов А и В – это О(I) группа, у других есть антиген А – это А(II) группа, у третьих есть антиген В – это В(III) группа, у четвертых есть антигены А и В – это АВ(IV) группа.

Четыре группы крови детерминируются (определяются) тремя аллелями гена I: I A , I B , i. Аллель i рецессивен по отношению к аллелям I A и I B . Аллельные гены I A и I B у лиц IV группы ведут себя независимо друг от друга: ген I A детерминирует антиген А, а ген I B – антиген В. Такое взаимодействие аллельных генов называется кодоминирование – когда в организме присутствует два доминантных гена и они друг друга не подавляют, каждый аллель детерминирует свой признак.

Генотипы людей четырех групп будут:

O(I) - ii (рецессивная гомозигота по гену i)

A(II) - I A I A или I A i (гомо- или гетерозигота по гену I A)

B(III) - I B I B или I B i (гомо- или гетерозигота по гену I B)

АВ(IV) - I A I B (гетерозигота по обоим доминантным генам).

Группы крови А(II) и В(III) наследуются по аутосомно-доминантному типу, а О(I) – по аутосомно-рецессивному типу.

Пример наследования группы крови системы АВО:

Если гомозиготная женщина А(II) группы крови выйдет замуж за мужчину О(I) группой, то все дети будут а(II) группы крови:

100% A(II) группы.

Кроме антигенов А и В на поверхности эритроцитов расположены антигены групп системы резус.

Наследование групп системы(Rh) резус.

Если на поверхности эритроцитов находится антиген Rh, то такие люди относятся к группе (Rh +) резус-положительной (встречается в 85% людей), а если отсутствует данный антиген, то они относятся к группе (rh -) резус-отрицательной (15% людей).

Группа крови Rh + может быть гомо- и гетерозиготная: Rh + Rh + и Rh + rh - ; группа rh - - только гомозиготная: rh - rh - .

Rh + - ген резус- положительности;

rh - - ген резус- отрицательности.

Проследим, какие последствия могут быть для детей, если мать имеет резус-отрицательную группу крови. Если оба супруга имеют одинаковый резус-фактор (положительный или отрицательный) иммунологического конфликта между плодом и организмом матери не будет. Резус-конфликт может возникнуть только в том случае, если у женщины резус-фактор отрицательный, а у мужа Rh . Поскольку Rh признак обуславливается доминантным геном, а rh – рецессивным, то при образовании зиготы с Rh возникает иммунологический конфликт: организм матери ведет себя так, как будто это не ее родной ребенок, а инородное тело. Антигены плода вызывают появление в организме матери антител, способных при высоких концентрациях нарушать нормальное развитие плода, вплоть до выкидыша. Однако при первой беременности количество антител не столь велико чтобы повредить плод. Но при второй беременности концентрация антител возрастает. Но и второй ребенок может родиться нормальным если после первой беременности не было абортов. У второго ребенка может возникнуть эритробластоз (- разрушение эритроцитов). При рождении может быть желтуха, в целом прогноз благополучный, ребенок остается живым. Если желтуха ярко выраженная проводится переливание крови полностью.

Например: женщина с группой крови rh вышла замуж за мужчину у которого кровь Rh:

1). Р: rh rh Rh Rh 2). P: rh rh Rh rh

G: rh Rh G: rh Rh rh

F: Rh rh F: Rh rh ; rh rh

100% - все дети резус-положительные 50% - резус-положительные дети

50% - резус-отрицательные

Летальные гены – гены в гомозиготном состоянии вызывающие гибель организма из-за нарушения нормального хода развития.

На пушных аукционах в 30-х г. г. очень ценились лисы необычно светлого тона, называемого платиновым. Платиновые лисы, при скрещивании их друг с другом давали всегда не только платиновых, но еще и серебристых лис в потомстве. Найти среди платиновых лис гомозиготных особей оказалось невозможным. Было замечено, что лисят в потомстве при скрещивании платиновых лис между собой всегда меньше, чем в норме. И соотношение между платиновыми и серебристыми лисятами не 3: 1, а 2: 1.

Платиновость – доминантный признак, а летальность, обусловленная тем же геном Р – рецессивна, т. к. Рр – выживают, а рр (в гомозиготе) – погибают.

Тема. ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ

План:

1. Основные термины и понятия в современной генетике.

2. Открытие Г. Менделем законов независимого наследования и их сущность.

3. Взаимодействие генов.

4. Типы наследования менделирующих признаков человека.

5. Наследование признаков, сцепленных с полом.

6. Сущность хромосомной теории Т. Моргана.

1. Основные термины и понятия в современной генетике.

Наследственность – свойство организмов передавать следующему поколению свои признаки и особенности развития, т. е. воспроизводить себе подобных.

Изменчивость – способность организмов изменять свои признаки и свойства, что проявляется в разнообразии особей внутри вида.

Наследование – процесс передачи « наследственных зачатков» (наследственной информации ) от поколения к поколению.

Ген – участок молекулы ДНК, кодирующий первичную структуру полипептида.

Аллельные гены – гены, располагающиеся в одних и тех же локусах гомологичных хромосом и определяющие развитие альтернативных признаков.

Локус – участок хромосомы занятый геном.

Гомологичные хромосомы – одинаковые по размерам, по форме, по составу генов, но разные по происхождению: одна - от отца, другая – от матери.

Альтернативные признаки – взаимно-исключающие признаки (карие и голубые глаза; желтая и зеленая окраска семян ).

Гомозиготный организм – организм, в котором данная пара аллельных генов одинакова (АА или аа ).

Гетерозиготный организм – организм, в котором пара аллелей не одинакова.

Гемизиготный организм – когда в диплоидном организме присутствует один ген из пары аллелей и он всегда проявляется. Гены эти локализованы в половых хромосомах гетерогаметного пола (у человека мужского). Например, проявление у мужчин гемофилии или дальтонизма: в Х-хромосоме у мужчин в локусе, которого нет в У – хромосоме, находится один ген гемофилии, а в У – хромосоме такой ген отсутствует.

Доминантный признак – признак, проявляющийся у гибридов (в гетерозиготе ).

Доминантный ген – преобладающий ген (А или В ).

Рецессивный признак – признак не проявляющийся в гетерозиготе.

Рецессивный ген – проявляется только в гомозиготном состоянии(аа или вв ).

Генотип – совокупность всех генов организма.

Фенотип – совокупность всех внутренних и внешних признаков организма.

Генофонд – совокупность генов вида или популяции.

Для того чтобы записать скрещивание, необходимо знать символы:

Р - (лат. Рarents.- родители) - родители;

G - (лат. Gametos – гаметы) – гаметы;

F - (лат. Filii – дети) – потомство;

♀ женский пол;

♂ мужской пол.

Открытие Г. Менделем законов независимого наследования и их сущность.

Основные закономерности наследования признаков в поколениях были открыты чешским исследователем Г. Менделем, опубликовавшим в 1865 г. «опыты над растительными гибридами».

До Г. Менделя была общепринята теория так называемой «слитной» наследственности. Ее суть состояла в том, что при оплодотворении мужское и женское «начала» перемешивались «как краски в стакане воды», давая начало новому организму.

Г. Мендель заложил фундамент представлений о дискретном характере наследственного вещества и о его распределении при образовании половых клеток у гибридов.

Г. Мендель в каждом эксперименте концентрировал внимание на одном признаке, а не на растении в целом, отбирал те признаки, по которым растения четко отличались. Прежде, чем скрещивать растения между собой, он убеждался, что они принадлежат чистым линиям. Для этого Г. Мендель в течение двух лет разводил различные сорта гороха, чтобы отобрать те линии, где признак всегда воспроизводился в потомстве из поколения в поколение (окраска семядолей, длина растения и др.).

В первых опытах Г. Мендель принимал во внимание только одну пару признаков. Такое скрещивание носит название моногибридное.

Моногибридное скрещивание – скрещивание форм отличающихся друг от друга по одной паре альтернативных признаков, передающихся по наследству.

Рассмотрим опыт Менделя с горохом. Он скрещивал две формы различающихся лишь по одной паре альтернативных признаков: с желтыми и зелеными семенами (выбранные формы в течение двух лет испытывались на гомозиготность (АА и аа ).

Введем буквенные обозначения:

А - ген желтой окраски

а - ген зеленой окраски

Р: ♀ АА × ♂ аа

G: А а

По фенотипу и по генотипу все потомство в F единообразно. По фенотипу: все семена имеют желтую окраску; по генотипу: все потомство гетерозиготно (Аа ).

Каждая клетка гороха имеет четырнадцать хромосом, т. е. 7 пар гомологов. Мы будем наблюдать только за одной парой гомологичных хромосом, - тех, в которых расположены гены А и а. В редукционном делении (первое деление мейоза) при образовании гамет число хромосом уменьшается вдвое, т. к. из каждой пары гомологов в гамету попадает только одна хромосома. У родительской формы с желтыми семенами эта хромосома содержит ген А, а у родительской формы с зелеными семенами – ген а.

Р:♀ А А ×♂ а а


G: А А а а

При оплодотворении мужская и женская гаметы сливаются и восстанавливается диплоидное число хромосом. В результате такого скрещивания все гибридные семена будут одинаковы, т. е. наблюдается единообразие гибридов первого поколения. Этот гибрид имеет в одной из гомологичных хромосом ген желтой окраски А , а в другой ген зеленой окраски а.

Какова же будет окраска гибридных семян Аа ? Ответить на этот вопрос с помощью логических рассуждений нельзя, он решается только экспериментальным путем. В данном случае оказывается, что все гибридные семена имеют желтую окраску.

I Закон Менделя (закон единообразия): При скрещивании гомозиготных особей, различающихся по одной паре альтернативных признаков, все потомство оказывается единообразным как по фенотипу, так и по генотипу.

Гибридные (гетерозиготные) растения первого поколения размножаются путем самоопыления.

Р: ♀ Аа ×♂ Аа

F: АА, Аа, Аа, аа

По фенотипу: 3: 1

По генотипу: 1: 2: 1

При образовании гамет гибридным растениям (Аа ) во время мейоза гомологичные хромосомы делящихся клеток расходятся к разным полюсам и попадают в разные гаметы. Поэтому гибрид образует два типа гамет: гаметы с геном А и гаметы с геном а.


Т. к. в результате каждого деления клетки возникают две дочерние, то эти два типа гамет образуются в равных количествах. При оплодотворении гаметы свободно комбинируются друг с другом, в результате чего возможно образование четырех типов (два из них одинаковы) зигот.

В потомстве F ¾ семян будут желтыми, а ¼ - зелеными.

В опытах Менделя желтых семян было 6022, а зеленых 2001 - соотношение 3: 1. Точно установив численные соотношения, Мендель понял, что во всех дальнейших поколениях ничего принципиально нового наблюдаться не будет.

2 Закон Менделя (закон расщепления): При скрещивании двух гетерозиготных особей, анализируемых по одной паре альтернативных признаков, в потомстве наблюдается расщепление по фенотипу 3: 1, по генотипу 1: 2: 1.

Дигибридное скрещивание – скрещивание форм, отличающихся друг от друга по двум парам альтернативных признаков.

Предположим, что гены, определяющие интересующие нас признаки, расположены в разных гомологичных хромосомах. Такие пары признаков наследуются независимо друг от друга.

Мендель изучал независимое наследование признаков у гороха. Были взяты растения, имеющие гладкие желтые семена и морщинистые зеленые.

Введем буквенные обозначения:

А - ген желтого цвета, а - зеленого

В - ген гладкой формы, в – морщинистой

Р: ♀ ААВВ × аавв


G: АВ ав

F 1: Аа Вв

В первом поколении все растения имели гладкие желтые семена.

Во втором поколении произошло расщепление:

Желтые гладкие

Желтые морщинистые

Зеленые гладкие

Зеленые морщинистые

При скрещивании гибридов первого поколения каждая родительская особь образует по четыре типа гамет:

Р: ♀ АаВв × АаВв

G: АВ Ав аВ ав АВ Ав аВ ав

♀♂ АВ Ав аВ ав
АВ ААВВ ААВв АаВВ АаВв
Ав ААВв ААвв АаВв Аавв
аВ АаВВ АаВв ааВВ ааВв
ав АаВв Аавв ааВв Аавв

При оплодотворении в результате свободного комбинирования четырех типов отцовских гамет с четырьмя такими же типами материнских получается шестнадцать типов зигот. Чтобы проследить все возможные сочетания удобнее всего составить решетку Пеннета (названную так по имени ученого, который впервые ее применил). В этой решетке по горизонтали вписываются женскин гаметы, а по вертикали – мужские. В шестнадцати клетках полученной решетки записываются сочетания генов в зиготах. Если суммировать в этой решетке все зиготы с одинаковыми фенотипами, то окажется, что их будет четыре группы в следующих соотношениях: 9: 3: 3: 1

9/16 А* В* - желтые гладкие

3/16 А* вв - желтые морщинистые

3/16 аа В* - зеленые гладкие

1/16 аавв - зеленые морщинистые

Расщепление по генотипу сложнее, всего образуется девять генотипических групп: 1: 2: 2: 1: 4: 1: 2: 2: 1.

Однако если мы обратим внимание только на один признак, например, цвет семян, то получим то же соотношение, что и при моногибридном скрещивании:

12 желтых: 4 зеленых, т. е. 3: 1.

По второму признаку (форма семян) то же самое:

12 гладких: 4 морщинистых (3: 1).

Это говорит о том, что признаки наследуются независимо друг от друга.

3 Закон Менделя (закон независимого комбинирования генов): При скрещивании дигибридов (АаВв) расщепление по каждой паре генов идет независимо от других пар генов и дает расщепление 3:1, образуя при этом 4 фенотипические группы в соотношении 9:3:3:1.

Чтобы проводить скрещивание, Менделю нужно было знать, гомо- или гетерозиготное растение гороха по цвету или по форме семян. Для этого он проводил анализирующее скрещивание.

Анализирующее скрещивание – скрещивание, проводящееся для определения генотипа организма.

Если у особи фенотипически проявился доминантный признак, по генотипу она может быть гомо- и гетерозиготной:

желтый горох аа – зеленый

Чтобы определить генотип, у которой фенотипически проявился доминантный признак, нужно скрестить ее с особью, имеющей рецессивный признак (по генотипу она обязательно будет гомозиготной по рецессивному гену – аа) . Затем следует проанализировать потомство. Если все многочисленное потомство (5 и более) будет с доминантным признаком, то генотип исходной особи – АА (т. е. исследуемая особь гомозиготна):

Р 1: АА × аа Р 2 : Аа × аа


АЛЛЕЛЬНЫХНЕАЛЛЕЛЬНЫХ

1.Полное доминирование 1.Комплементарность

2.Неполное доминирование 2.Эпистаз

3.Сверхдоминирование 3.Полимерия

4.Множественный аллелизм 4.Плейтропия

5.Кодоминирование

Взаимодействие аллельных генов:

Полное доминирование – когда один ген полностью подавляет действие другого, например, наследование цвета глаз у человека.

Р: АА аа А – ген карих

Закономерности наследственности. Законы Г. Менделя, их статистический характер и цитологические основы

Основные закономерности наследственности установил выдающийся чешский ученый Грегор Мендель. Свои исследования Г. Мендель начал с моногибридного скрещивания, при котором родительские особи отличаются по состоянию одного признака. Выбранный им горох посевной - само-запильна растение, поэтому потомки каждой особи являются чистыми линиями. Вместе горох можно искусственно перекрестно опылить, что делает возможным гибридизацию и получения гетерозиготных (гибридных) форм. Как материнские (Р) были взяты растения чистой линии с желтым цветом семян, а родительской (Р) - с зеленым цветом. В результате такого скрещивания семена растений (гибридов первого поколения - F1) оказалось однообразным - желтого цвета. То есть в фенотипе гибридов F1 проявились лишь доминантные признаки.

Однообразие первого гибридного поколения и выявления у гибридов только доминантного признака называется законом доминирования или И законом Менделя.

Расщепление - явление проявления обоих состояний признаки во втором поколении гибридов (F2), обусловлено различием аллельных генов, которые их определяют.

Есть самоопыляющиеся растения F1 с желтыми семенами дают потомства с желтым и с зелеными семенами; рецессивный признак не исчезает, а только временно подавляется, вновь появляется в F2 в соотношении 1/4 часть зеленых семян и 3/4 - желтых. То есть точно - 3:1.

Проявление в фенотипе четверти гибридов второго поколения рецессивного признака, а трех четвертых - доминантной, получила название закона расщепления, II закона Менделя.

В дальнейшем Г. Мендель усложнил условия в опытах - использовал растения, которые отличались различными состояниями двух (Дигибридное скрещивание) или большего числа признаков (полигибридное скрещивания). При скрещивании растений гороха с желтыми гладкими семенами и морщинистыми зелеными - все гибриды первого поколения имели гладкие желтые семена - проявление И закона Менделя - единообразия гибридов первого поколения. Но среди гибридов F2 оказалось четыре фенотипа.

На основании полученных результатов Г. Мендель сформулировал закон независимого комбинирования состояний признаков (закон независимого наследования признаков). Это ІІІ закон Менделя. При ди-или полигибридном скрещивании расщепления состояний каждого признака у потомков происходит независимо от других. Для дигибридном скрещивания характерно расщепление по фенотипу 9:3:3:1, причем появляются группы с новыми сочетанием признаков.

Неполное доминирование - промежуточный характер наследования. Существуют аллели, которые лишь частично доминируют над рецессивными. Тогда гибридная особь имеет степень признака в фенотипе, что отличает ее от родительских. Это явление получило название неполного доминирования.

Методы проверки генотипа гибридных особей

Как известно, при полном доминировании особи с доминантным и гетерозиготным набором хромосом фенотипически одинаковы. Определить их генотип возможно с помощью анализирующего скрещивания. Оно базируется на том, что особи, гомозиготные по рецессивным признаком , всегда подобные фенотипически. Это скрещивание рецессивного гомозиготной особи с особью с доминантным признаком , но неизвестным генотипом.

При получении однообразной F1 каждая родительская особь образует только один тип гамет. Итак, доминантная особь гомозиготной по генотипу (АА).

Если при скрещивании особи с доминантным признаком с особью с рецессивной гомозиготной признаком полученное потомство имеет расщепление 1:1, то исследуемая особь с доминантным признаком гетерозиготная (Аа).

  1. Особенности метода гибридологического анализа. Законы Менделя.
  2. Типы взаимодействия генов.
  3. Сцепленное наследование признаков.
  4. Цитоплазматическое наследование.

Метод гибридологического анализа , заключающийся в скрещивании и последующем учете расщеплений (соотношений фенотипических и генотипических разновидностей потомков), был разработан чешским естествоиспытателем Г. Менде­лем (1865). К особенностям этого метода относят: 1) учет при скрещивании не всего многообразного комплекса признаков у родителей и потомков, а анализ наследования отдельных, выделяемых исследователем альтернативных признаков ; 2) количе­ственный учет в ряду последовательных поколений гибридных растений, различающихся по отдельным признакам; 3) индивиду­альный анализ потомства от каждого растения.

Работая с самоопыляющимися растениями гороха садового, Г.Мендель выбрал для эксперимента сорта (чистые линии), отличающиеся друг от друга альтернативными проявлениями признаков. Полученные данные Мендель обработал математически, в результате чего раскрылась четкая закономерность наследования отдельных признаков родительских форм их потомками в ряде последующих поколений. Эту закономерность Мендель сформулировал в виде правил наследственности, получивших позднее название законов Менделя .

Скрещивание двух организмов называют гибридизацией. Моногибридным (моногенным ) называют скрещивание двух организмов, при котором прослеживают наследование одной пары альтернативных проявлений какого-либо признака (развитие этого признака обусловлено парой аллелей одного гена). Гибриды первого поколения являются единообразными по исследуемому признаку. В F1 проявляется лишь один из пары альтернативных вариантов признака цвета семян, названный доминантным. Эти результаты иллюстрируют первый закон Менделя - закон единообразия гибридов первого поколения, а также правило доминирования.

Первый закон Менделя можно сформулировать следующим образом: при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения окажутся по этим признакам едино­образными. У гибридов проявятся доминантные признаки родите­лей.

Во втором поколении обнаружилось расщепление по исследуемому признаку

Соотношение потомков с доминантным и рецессивным проявлением признака оказалось близко к ¾ к ¼. Таким образом, второй закон Менделя можно сформулировать следующим образом: при моногибридном скрещивании гетерозигот­ных особей (гибридов F1) во втором поколении наблюдается расщепление по вариантам анализируемого признака в отношении 3:1 по фенотипу и 1:2:1 по генотипу. Чтобы объяснить распределение признаков у гибридов после­довательных поколений, Г. Мендель предположил, что каждый наследственный признак зависит от наличия в соматических клетках двух наследственных факторов, полученных от отца и матери. К настоящему времени установлено, что наследственные факторы Менделя соответствуют генам - локусам хромосом.

Гомозиготные растения с желтыми семенами (АА) образуют гаметы одного сорта с аллелем А; растения с зелеными семенами (аа) образуют гаметы с а. Таким образом, пользуясь современной терминологией, гипоте­зу «чистоты гамет » можно сформулировать следующим образом: "В процессе образования половых клеток в каждую гамету попадает только один ген из аллельной пары, потому что, в процессе мейоза в гамету попадает одна хромосома из пары гомологичных хромосом.

Скрещивание, при котором прослеживается наследование по двум парам альтернативных признаков, называют дигибридным , по нескольким парам признаков- полигибридным . В опытах Менделя при скрещивании сорта гороха, имевшего желтые (А) и гладкие (В) семена, с сортом гороха с зелеными (а) и морщинистыми (Ь) семенами, гибриды F1 имели желтые и гладкие семена, т.е. проявились доминантные признаки (гибриды едино­образны).

Гибридные семена второго поколения (F2) распределились на четыре фенотипические группы в соотношении: 315 - с гладкими желтыми семенами, 101 - с морщинистыми желтыми, 108- с гладкими зелеными, 32 - с зелеными морщинистыми семенами. Если число потомков в каждой группе разделить на число потомков в самой малочисленной группе, то в F2 соотношение фенотипических классов составит приблизительно 9:3:3:1. Итак, согласно третьему закону Менделя , гены разных аллельных пар и соответствующие им признаки передаются потомству независимо друг от друга, комбинируясь во всевозмож­ных сочетаниях.

При полном доминировании одного аллеля над другим гетерозиготные особи фенотипически неотличимы от гомозиготных по доминантному аллелю и различить их можно только с помощью гибридологического анализа, т.е. по потомству, которое получается от определенного типа скрещивания, получившего название анализирующего . Анализирующим является такой тип скрещивания, при котором испытуемую особь с доминантным признаком скрещивают с особью, гомозиготной по рецессивному аплелю.

Если доминантная особь гомозиготна, потомство от такого скрещивания будет единообразным и расщепления не произойдет. В том случае, если особь с доминантным признаком гетерозиготна, расщепление произойдет в отношении 1:1 по фенотипу и генотипу.

Взаимодействие генов

В отдельных случаях действие разных генов относительно независимо, но, как правило, проявление признаков есть результат взаимодействия продуктов разных генов. Эти взаимодействия могут быть связаны как с аллельными , так и с неаллельными генами.

Взаимодействие между аллельными генами осуществляется в виде трех форм: полное доминирование, неполное доминирование и независимое проявление (кодоминирование).

Ранее были рассмотрены опыты Менделя, выявившие полное доминирование одного аллеля и рецессивность другого. Неполное доминирование наблюдается в том случае, когда один ген из пары аллелей не обеспечивает образование в достаточном для нормального проявления признака его белкового продукта. При этой форме взаимодействия генов все гетерозиготы и гомозиготы значительно отличаются по фенотипу друг от друга. При кодоминирсвании у гетерозиготных организмов каждый из аллельных генов вызывает формирование в фенотипе контролируемого им признака. Примером этой формы взаимогействия аллелей служит наследование групп крови человека по системе АВО, детерминируемых геном I. Существует три аллеля этого гена Iо,Iа,IЬ, определяющие антигены групп крови. Наследование групп крови иллюстрирует также явление множественного аллелизма: в генофондах популяций человека ген I существует в виде трех разных аллелей, которые комбинируются у отдельных индивидуумов только попарно.

Взаимодействие неаллельных генов. В ряде случаев на один признак организма могут влиять две (или более) пары неаллельных генов. Это приводит к значитель­ным численным отклонениям фенотипических (но не генотипических) классов от установленных Менделем при дигибридном скрещивании. Взаимодействие неаллельных генов подразделяют на основные формы: комплементарность, эпистаз, полимерию.

При комплементарном взаимодействии признак проявляется лишь в случае одновременного присутствия в генотипе организма двух доминантных неаллельных генов. Примером комплементар­ного взаимодействия может служить скрещивание двух различных сортов душистого горошка с белыми лепестками цветков.

Следующим видом взаимодействия неаллельных генов является эпистаз, при котором ген одной аллельной пары подавляет действие гена другой пары. Ген, подавляющий действие другого, называется эпистатическим геном (или супрессором). Подавля­емый ген носит название гипостатического. Эпистаз может быть доминантным и рецессивным. Примером доминантного эпистаза служит наследование окраски оперения кур. Ген С в доминантной форме определяет нормальную продукцию пигмента, но домина­нтный аллель другого гена I является его супрессором. В результате этого куры, имеющие в генотипе доминантный аллель гена окраски, в присутствии супрессора оказываются белыми. Эпистатическое действие рецессивного гена иллюстрнрует наследование окраски шерсти у домовых мышей. Окраска агути (рыжевато-серая окраска шерсти) определяется доминантным геном А. Его рецессивный аллель а в гомозиготном состоянии обусловливает черную окраску. Доминантный ген другой пары С определяет развитие пигмента, гомозиготы по рецессивному аллелю с являются альбиносами с белой шерстью и красными глазами (отсутствие пигмента в шерсти и радужной оболочке глаз).

Наследование признака, передача и развитие которого, обусловлены, как правило, двумя аллелями одного гена, называют моногенным . Кроме того известны гены из разных аллельных пар (их называют полимернымиили полигенами ), примерно одинаково влияющие на признак.

Явление одновременного действия на признак нескольких неаллельных однотипных генов получило название полимерии. Хотя полимерные гены не являются аллельными, но так как они определяют развитие одного признака, их обычно обозначают одной буквой А (а), цифрами указывая число аллельных пар. Действие полигенов чаще всего бывает суммирующим.

Сцепленное наследование

Анализ наследования од­новременно нескольких признаков у дрозофилы, проведенный Т. Морганом, показал, что результаты анализирующего скрещивания гибридов F1 иногда отличаются от ожидаемых в случае их незави­симого наследования. У потомков такого скрещивания вместо свободного комбинирования признаков разных пар наблюдали, тенденцию к наследованию преимущественно родительских соче­таний признаков. Такое наследование признаков было названо сцепленным. Сцепленное наследование объясняется расположением соответствующих генов в одной и той же хромосоме. В составе последней они передаются из поколения в поколение клеток и организмов, сохраняя сочетание аллелей родителей.

Зависимость сцепленного наследования признаков от локали­зации генов в одной хромосоме дает основание рассматривать хромосомы как отдельные группы сцепления. Анализ наследования призна­ка окраски глаз у дрозофилы в лаборатории Т. Моргана выявил некоторые особенности, заставившие выделить в качестве отдель­ного типа наследования признаков сцепленное с полом наследование .

Зависимость результатов эксперимента от того, кто из родителей являлся носителем доминантного варианта признака, позволила высказать предположение, что ген, определяющий окраску глаз у дрозофилы, расположен в Х-хромосоме и не имеет гомолога в У-хромосоме. Все особенности сцепленного с полом наследования объясняются неодинаковой дозой соответствующих генов у пред­ставителей разного - гомо- и гетерогаметного пола. Х-хромосома присутствует в кариотипе каждой особи, поэтому признаки, определяемые генами этой хромосомы, формируются у представителей как женского, так и мужского пола. Особи гомогаметного пола получают эти гены от обоих родителей и через свои гаметы передают их всем потомкам. Представители гетерогаметного пола получают единственную X-хромосому от гомогаметного родителя и передают ее своему гомогаметному потомству. У млекопитающих (в том числе и человека) мужской пол получает Х-сцепленные гены от матери и передает их дочерям. При этом мужской пол никогда не наследует отцовского Х-сцепленного признака и не передает его своим сыновьям

Активно функционирующие гены У-хромосомы, не имеющие аллелей в Х-хромосоме, присутствуют в генотипе только гетерогаметного пола, причем в гемизиготном состоянии. Поэтому они проявляются фенотипически и передаются из поколения в поколение лишь у представителей гетерогаметного пола. Так, у человека признак гипертрихоза ушной раковины («во­лосатые уши») наблюдается исключительно у мужчин и наследуется от отца к сыну.

Мы начнем с изложения законов Менделя, затем поговорим про Моргана, и в конце скажем, зачем генетика нужна сегодня, чем она помогает и каковы ее методы.

В 1860-х годах монах Мендель занялся исследованием наследования признаков. Этим занимались и до него, и впервые об этом говорится в Библии. В Ветхом завете говорится о том, что если владелец скота хотел получить определенную породу, то он одних овец кормил ветками очищенными, если хотел получить потомство с белой шерстью, и неочищенными, если хотел получить шкуру скота черной. То есть как наследуются признаки волновало людей еще до написания Библии. Почему же до Менделя никак не могли найти законы передачи признаков в поколениях?

Дело в том, что до него исследователи выбирали совокупность признаков одного индивида, с которыми было сложнее разбираться, нежели с одним признаком. До него передача признаков рассматривалась часто как единый комплекс (типа - у нее лицо бабушкино, хотя отдельных признаков тут очень много). А Мендель регистрировал передачу каждого признака в отдельности, независимо от того, как передались потомкам другие признаки.

Важно, что Мендель выбрал для исследования признаки, регистрация которых была предельно простой. Это признаки дискретные и альтернативные:

  1. дискретные (прерывистые) признаки: данный признак либо присутствует, либо отсутствует. Например, признак цвета: горошина либо зеленая, либо не зеленая.
  2. альтернативные признаки: одно состояние признака исключает наличие другого состояния. Например, состояние такого признака как цвет: горошина либо зеленая, либо желтая. Оба состояния признака в одном организме проявиться не могут.

Подход к анализу потомков был у Менделя такой, который до него не применяли. Это количественный, статистический метод анализа: все потомки с данным состоянием признака (например - горошины зеленые) объединялись в одну группу и подсчитывалось их число, которое сравнивали с числом потомков с другим состоянием признака (горошины желтые).

В качестве признака Мендель выбрал цвет семян посевного гороха, состояние которого было взаимоисключающим: цвет или желтый, или зеленый. Другой признак - форма семян. Альтернативные состояния признака - форма или морщинистая или гладкая. Оказалось, что эти признаки стабильно воспроизводятся в поколениях, и проявляются либо в одном состоянии, либо в другом. В общей сложности Мендель исследовал 7 пар признаков, следя за каждым по отдельности.

При скрещивании Мендель исследовал передачу признаков от родителей к их потомкам. И вот что он получил. Один из родителей давал в череде поколений при самоопылении только морщинистые семена, другой родитель - только гладкие семена.

Горох - самоопылитель. Для того, чтобы получить потомство от двух разных родителей (гибриды), ему нужно было сделать так, чтобы растения не самоопылялись. Для этого он удалял у одного родительского растения тычинки, и переносил на него пыльцу с другого растения. В этом случае образовавшиеся семена были гибридными. Все гибридные семена в первом поколении оказались одинаковыми. Все они оказались гладкими. Проявившееся состояние признака мы называем доминантным (значение корня этого слова - господствующий). Другое состояние признака (морщинистые семена) у гибридов не обнаруживалось. Такое состояние признака мы называем рецессивным (уступающим).

Мендель скрестил растения первого поколения внутри себя и посмотрел на форму получившихся горошин (это было второе поколение потомков скрещивания). Основная часть семян оказалась гладкой. Но часть была морщинистой, точно такой же у исходного родителя (если б мы говорили про собственную семью, то сказали бы, что внук был точно в дедушку, хоть у папы с мамой этого состояния признака не было совсем). Он провел количественное исследование того, какая доля потомков относится к одному классу (гладкие - доминантные), а какая к другому классу (морщинистые - рецессивные). Оказалось, что морщинистых семян получилась примерно четверть, а три четверти - гладких.

Мендель провел такие же скрещивания гибридов первого поколения по всем остальным признакам: цвету семян, окраски цветка и др. Он увидел, что соотношение 3:1 сохраняется.

Мендель провел скрещивание и в одном направлении (папа с доминантным признаком, мама - с рецессивным) и в другом (папа с рецессивным признаком, мама с доминантным). При этом качественные и количественные результаты передачи признаков в поколениях были одинаковыми. Из этого можно сделать вывод, что и женские и отцовские задатки признака вносят одинаковый вклад в наследование признака у потомства.

То, что в первом поколении проявляется признак только одного родителя, мы называем законом единообразия гибридов первого поколения или законом доминирования.

То, что во втором поколении вновь появляются признаки и одного родителя (доминантный) и другого (рецессивный) позволило Менделю предположить, что наследуется не признак как таковой, а задаток его развития (то, что мы сейчас называем геном). Он также предположил, что каждый организм содержит пару таких задатков для каждого признака. От родителя к потомку переходит только один из двух задатков. Задаток каждого типа (доминантный или рецессивный) переходит к потомку с равной вероятностью. При объединении у потомка двух разных задатков (доминантный и рецессивный) проявляется только один из них (доминантный, он обозначается большой буквой А). Рецессивный задаток (он обозначается малой буквой а) у гибрида не исчезает, поскольку проявляется в виде признака в следующем поколении.

Так как во втором поколении появился точно такой же организм, как и родительский, Мендель решил, что задаток одного признака «не замазывается», при объединении с другим, он остается таким же чистым. В последствии было выяснено то, что от данного организма передается только половина его задатков - половые клетки, они называются гаметами, несут только один из двух альтернативных признаков.

У человека насчитывается около 5 тыс. морфологических и биохимических признаков, которые наследуются достаточно четко по Менделю. Судя по расщеплению во втором поколении, альтернативные задатки одного признака комбинировались друг с другом независимо. То есть доминантный признак мог проявиться при комбинациях типа Аа , аА и АА , а рецессивный только в комбинации аа .

Повторим, что Мендель предположил, что наследуется не признак, а задатки признака (гены) и что эти задатки не смешиваются, поэтому этот закон называется законом чистоты гамет. Через исследование процесса наследования можно было сделать выводы о некоторых характеристиках наследуемого материала, то есть что задатки стабильны в поколениях, сохраняют свои свойства, что задатки дискретны, то есть определяются только одно состояние признака, то, что их два, они комбинируются случайно и т.д.

Во времена Менделя еще ничего не было известно о мейозе, хотя про ядерное строение клетки уже знали. То, что в ядре содержится вещество, названное нуклеином, стало известно только через пару лет после открытия законов Менделя, причем это открытие с ним никак не было связано.

Все выводы вышеизложенного материала можно сформулировать следующим образом:

1) Каждый наследственный признак определяется отдельным наследственным фактором, задатком; в современном представлении эти задатки соответствуют генам;

2) Гены сохраняются в чистом виде в ряду поколений, не утрачивая своей индивидуальности: это явилось доказательством основного положения генетики: ген относительно постоянен;

3) Оба пола в равной мере участвуют в передаче своих наследственных свойств потомству;

4) Редупликация равного числа генов и их редукция в мужских и женских половых клетках; это положение явилось генетическим предвидением существования мейоза;

5) Наследственные задатки являются парными, один - материнский, другой - отцовский; один из них может быть доминантным, другой - рецессивным; это положение соответствует открытию принципа аллелизма: ген представлен минимум двумя аллелями.

К законам наследования относятся закон расщепления наследственных признаков в потомстве гибрида и закон независимого комбинирования наследственных признаков. Эти два закона отражают процесс передачи наследственной информации в клеточных поколениях при половом размножении. Их открытие явилось первым фактическим доказательством существования наследственности как явления.

Законы наследственности имеют другое содержание, и они формулируются в следующем виде:

  • Первый закон - закон дискретной (генной) наследственной детерминации признаков; он лежит в основе теории гена.
  • Второй закон - закон относительного постоянства наследственной единицы - гена.
  • Третий закон - закон аллельного состояния гена (доминантность и рецессивность).

То, что законы Менделя связаны с поведением хромосом при мейозе, было обнаружено в начале ХХ века во время повторного открытия законов Менделя сразу тремя группами ученых независимо друг от друга. Как вам уже известно, особенность мейоза заключается в том, что число хромосом в клетке уменьшается вдвое, хромосомы могут меняться своими частями при мейозе. Такая особенность характеризует ситуацию с жизненным циклом у всех эукариот.

Для того, чтобы проверить предположение о наследовании задатков в таком виде, как мы уже говорили, Мендель провел также скрещивание потомков первого поколения, имеющие желтые семена с родительскими зелеными (рецессивными). Скрещивание на рецессивный организм он назвал анализирующим. В результате он получил расщепление один к одному: (Аа х аа = Аа + Аа + аа + аа ). Таким образом, Мендель подтвердил предположение, что в организме первого поколения есть задатки признаков каждого из родителей в соотношении 1 к 1. Состояние, когда оба задатка признака одинаковы, Мендель назвал гомозиготным, а когда разные - гетерозиготным.


Мендель учитывал результаты, полученные на тысячах семян, то есть он проводил статистические исследования, которые отражают биологическую закономерность. Открытые им самые законы будут действовать и на других эукариотах, например грибах. Здесь показаны грибы, у которых четыре споры, получаемые в результате одного мейоза, остаются в общей оболочке. Анализирующее скрещивание у таких грибов приводит к тому, в одной оболочке присутствуют 2 споры с признаком одного родителя и две с признаком другого. Таким образом, расщепление 1:1 в анализирующем скрещивании отражает биологическую закономерность расщепления задатков одного признака в каждом мейозе, которая будет выглядеть как закономерность статистическая, если все споры смешать.

То, что у родителей были разные состояния одного признака, говорит о том, что задатки к развитию признака могут как-то меняться. Эти изменения называются мутациями. Мутации бывают нейтральными: форма волос, цвет глаз и др. Некоторые мутации приводят к изменениям, нарушающим нормальное функционирование организма. Это коротконогость у животных (крупный рогатый скот, овцы и др.), безглазость и бескрылость у насекомых, бесшерстность у млекопитающих, гигантизм и карликовость.

Некоторые мутации могут быть и безвредными, например бесшерстность у людей, хотя все приматы имеют волосяной покров. Но иногда встречаются изменения интенсивности волосяного покрова на теле и у людей. Н.И.Вавилов назвал такое явление законом гомологических рядов наследственной изменчивости: то есть признак, типичный только для одного из двух родственных видов, может быть обнаружен с какой-то частотой и у особей родственного вида.

На этом слайде показано то, что мутации могут быть достаточно заметными, мы видим негритянскую семью, в которой родился белый негр - альбинос. У него дети, скорее всего, будут пигментированными, поскольку мутация эта рецессивная, а частота ее встречаемости низка.

Мы говорили до этого о признаках, которые проявляются полностью. Но это не для всех признаков так. Например, фенотип гетерозигот может быть промежуточным между доминантным и рецессивным признаком родителей. Так, окраска плода у баклажан в первом поколении меняется с темно-синей на менее интенсивную фиолетовую. При этом во втором поколении расщепление по наличию окраски осталось 3:1, но если учитывать интенсивность окраски расщепление стало 1:2:1 (цвет темно-синий - АА , фиолетовый - 2Аа и белый - аа , соответственно) В данном случае видно, что проявление признака зависит от дозы доминантного аллеля. Расщепление по фенотипу соответствует расщеплению по генотипу: классы АА , Аа и аа , в соотношении 1:2:1.

Еще раз выделим роль Менделя в развитии науки. Никто до него не размышлял, что вообще могут существовать задатки признаков. Считалось, что в каждом из нас сидит маленький человечек, внутри его - еще маленький человечек и т.д. Зачатие имеет к его появлению какое-то отношение, но по механизму, готовый маленький человечек уже присутствует с самого начала своего роста. Такими были доминирующие представления, у которых, безусловно, был недостаток - по этой теории, при большом числе поколений гомункулус должен был получиться по размеру меньше элементарной частицы, но тогда про частицы еще не знали J.

Откуда Мендель знал, какой признак является доминантным, а какой рецессивным? Ничего такого он не знал, просто взял некоторый принцип организации опыта. Удобно, что признаки, за которыми он наблюдал, были разными: рост, размер, цвет цветка, цвет боба и т.д. У него не было априорной модели механизма наследования, он вывел ее из наблюдения за передачей признака в поколениях. Еще одна особенность его метода. Он получил, что доля особей с рецессивным признаком во втором поколении составляет четверть от всего потомства. То есть вероятность того, что данная горошина зеленая - 1/4. Допустим получилось в среднем по 4 горошины в одном стручке. Будет ли в каждом стручке (это потомство от двух и только от двух родителей) 1 горошина зеленая и 3 желтых? Нет. Например, вероятность того, что там будет 2 зеленых горошины равна 1/4 х 1/4 = 1/16, а того, что все четыре зеленые - 1/256. То есть, если взять кучу бобов, с четырьмя горошинами в каждом, то у каждой 256-ой все горошины будут с рецессивными признаками, то есть зелеными. Мендель анализировал потомство множества одинаковых пар родителей. О скрещивании было рассказано, потому что они показывают, что законы Менделя проявляются как статистические, а в основе имеют биологическую закономерность - 1:1. То есть гаметы разных типов в КАЖДОМ мейозе у гетерозиготы образуются в равном соотношении - 1:1, а закономерности проявляется статистически, поскольку анализируются потомки сотен мейозов - Мендель анализировал более 1000 потомков в скрещивании каждого типа.

Сначала Мендель исследовал наследование одной пары признаков. Затем он задался вопросом, что будет происходить, если одновременно наблюдать за двумя парами признаков. Выше на рисунке, в правой части проиллюстрировано такое исследование по дум парам признаков - цвету горошин и форме горошин.

Родители одного типа давали при самоопылении горошины желтые и круглой формы. Родители другого типа давали при самоопылении горошины зеленые и морщинистой формы. В первом поколении он получил все горошины желтые, а по форме - круглые. Получившееся расщепление во втором поколении удобно рассмотреть с помощью решетки Пенета. Получили расщепление по признакам 9:3:3:1 (желтые и круглые: желтые и морщинистые: зеленые и круглые: зеленые и морщинистые). Расщепление по каждой паре признаков происходит независимо друг от друга. Соотношение 9жк + 3жм + 3зк + 1зм соответствует независимой комбинации результатов двух скрещиваний (3ж + 1з) х (3к + 1 м). То есть и задатки признаков этих пар (цвет и форма) комбинируются независимо.

Посчитаем, сколько разных фенотипических классов мы получили. У нас было 2 фенотипических класса: желтые и зеленые; и по другому признаку 2 фенотипических класса: круглые и морщинистые. А всего будет 2*2=4 фенотипических класса, что мы и получили выше. Если рассматривать три признака, то фенотипических классов будет 2 3 =8 классов. Мендель доходил до дигибридных скрещиваний. Задатки всех признаков, к счастью Менделя, находились у гороха на разных хромосомах, а всего хромосом у гороха - 7 пар. Поэтому, оказалось, что он взял признаки, которые комбинировались независимо в потомстве.

У человека 23 пары хромосом. Если рассмотреть какой-то один гетерозиготный признак для каждой хромосомы, может у человека может наблюдаться 2 23 ~ 8*10 6 фенотипических классов в потомстве одной супружеской пары. Как упоминалось на первой лекции, каждый из нас содержит между папиными и мамиными хромосомами порядка 1 различия на 1000 позиций, то есть всего порядка миллиона различий между папиными и мамиными хромосомами. То есть каждый из нас является потомком миллионногибридного скрещивания, при котором число фенотипических классов составляет 2 1000000 . Практически это число фенотипических классов в потомстве одной пары не реализуется, потому что хромосом у нас всего 23, а не миллион. Получается, что 8*10 6 - это нижний предел величины возможного разнообразия в потомстве данной супружеской пары. Исходя из этого, можно понять, что не может быть двух абсолютно одинаковых людей. Вероятность мутации данного нуклеотида в ДНК за одно поколение составляет около 10 -7 - 10 -8 , то есть на весь геном (3*10 9) получится около 100 изменений de novo между родителем и ребенком. А всего отличий в папиной половинке вашего генома от маминой половинки - около 1 000 000. Это значит, что старые мутации в вашем геноме гораздо более частые, чем вновь возникшие (в 10 000 раз).

Также Мендель проводил анализирующее скрещивание - скрещивание с рецессивной гомозиготой. У потомка первого поколения комбинация генов имеет вид АаВ b . Если скрестить его с представителем с полностью рецессивным набором генов (aabb ), то получится четыре возможных класса, которые будут находиться в соотношении 1:1:1:1, в отличие от рассмотренного выше скрещивания, когда мы получили расщепление 9:3:3:1.

Ниже показаны некоторые статистические критерии - какие соотношения чисел следует считать соответствующими ожидаемым, скажем, 3:1. Например, для 3:1 - из четырехсот горошин вряд ли получится точно 300 к 100. Если получится, к примеру, 301 к 99, то это отношение наверное можно считать равным 3 к 1. А 350 к 50 уже, наверное, не равно 3 к 1.

Статистический тест хи-квадрат (χ 2) используется для проверки гипотезы соответствия наблюдаемого распределения ожидаемому. Произносится эта греческая буква в русском языке как «хи», а в английском - как «чи» (chi).

Величина χ 2 рассчитывается как сумма квадратов отклонений наблюдаемых величин от ожидаемой, деленных на ожидаемую величину. Затем по специальной таблице для данного значения χ 2 находят величину вероятности того, что такое различие между наблюдаемой и ожидаемой величиной является случайным. Если вероятность оказывается меньше 5% то отклонение считается не случайным (цифра в пять процентов выбрана по договоренности).


Всегда ли будет проявляться какой-либо наследственно предопределенный признак? Ведь это предположение по умолчанию лежит в основе интерпретации данных полученных Менделем.

Оказывается, это может зависеть от многих причин. Есть такая наследуемая черта у человека - шестипалость. Хотя у нас, как и у всех позвоночных, пальцев в норме пять.

Вероятность проявления задатка признака в виде наблюдаемого признака (здесь - шестипалость) может быть меньше 100%. На фотографии у человека на обеих ногах по 6 пальцев. А у его близнеца этот признак не обязательно проявится. Доля индивидов с данным генотипом, у которых проявляется соответствующий фенотип, была названа пенетрантностью (этот термин ввел российский генетик Тимофеев-Ресовский).

В некоторых случаях шестой палец может быть просто обозначен некоторым кожным приростом. Степень выраженности признака у индивида Тимофеев-Ресовский предложил называть экспрессивностью.

Особенно ясно не 100% связь генотипа с фенотипом прослеживается при исследовании идентичных близнецов. Генетическая конституция у них один в один, а признаки у них совпадают в разной степени. Ниже представлена табличка, в которой представлено совпадение признаков для близнецов идентичных и неидентичных. В качестве признаков в этой таблице взяты различные болезни.


Признак, который присутствует у большинства особей в естественных условиях обитания, называется диким типом. Наиболее распространенный признак часто оказывается доминантным. Такая связь может иметь приспособительное значение, полезное для вида. У человека доминантными признаками являются, к примеру, черные волосы, темные глаза, кудрявые волосы. Кстати, поскольку соответствующие гены находятся на разных хромосомах, то может получиться кудрявый негр, который будет блондином - ничто это не запрещает.

Почему так получается, что в при моногибридном скрещивании трем генотипическим классам в потомстве второго поколения соответствует в некоторых случаях три фенотипических класса (баклажаны синие фиолетовые и белые), а в другом случае - два класса (желтая или зеленая горошина)? Почему в одном случае проявление доминантного признака неполное, а в другом - полное? Можно провести аналогию с фотопленкой. В зависимости от количества света, кадр может получиться совсем прозрачным, серым и совсем черным. То же самое - с генами. Например, есть у кукурузы ген Y, который определяет образование витамина А. Когда доза гена Y на клетку растет от одного до трех, то линейно изменяется активность фермента, который он кодирует и, в данном случае, усиливается образование витамина А и окраска зерна. (У кукурузы основная часть зерна - эндосперм. В каждой клетке эндосперма три генома - два от мамы и один от папы). То есть, многие признаки зависят от дозы аллеля количественно. Чем больше копий аллеля нужного типа, тем больше будет величина контролируемого им признака. Такая связь постоянно используется в биотехнологии.


Мендель мог благополучно свои законы и не открыть. Исследования на горохе позволили Менделю открыть свои законы, потому что горох - самоопыляемое растение, а потому без принуждения - гомозиготный. При самоопылении доля гетерозигот уменьшается пропорционально двум в степени номера поколения. В этом заключалось везение Менделя - если бы доля гетерозигот была большой, то никаких бы закономерностей не наблюдалось. Когда он затем взял перекрестные опылители, то закономерности нарушились, что сильно расстроило Менделя, потому что он подумал, что открыл нечто частное. Оказалось, что нет.


Выше было рассказано о наследовании признаков качественных, а обычно большинство признаков - количественные. Их генетический контроль достаточно сложен. Количественные признаки описываются через среднюю величину значения признака и размахом варьирования, которая называется нормой реакции. И величина средней, и норма реакции - это видоспецифические показатели, которые зависят как от генотипа, так и от условий среды. К примеру, продолжительность жизни человека. Хоть в Библии и написано, что пророки жили по 800 лет, но сейчас ясно, что больше 120-150 лет никто не живет. А, мышь, например, живет два года, хотя она тоже млекопитающее. Наш рост, наш вес - это все количественные признаки. Нет людей 3-4 метрового роста, хотя слоны, к примеру, есть. У каждого вида своя средняя по каждому количественному признаку и свой размах его варьирования.


Закономерности наследования открыты при исследовании качественных признаков.

Большинство наших признаков - количественные.

Величины значений признаков в представительной выборке особей данного вида характеризуются определенной средней и широтой ее варьирования, которая называется нормой реакции и зависит как от генотипа, так и от условий формирования признака.

Тема 4.2 Основные закономерности

наследственности

Терминология 1. Альтернативные – контрастные признаки. 2. Чистые линии – растения, в ряду которых при самоопылении не наблюдается расщепления. 3. Гибридиологический метод – получение гибридного потомства и его анализ. 4. Родительские особи – Р. 5. Мужские особи – ♂. 6. Женские особи – ♀. 7. Скрещивание – X. 8. Гибриды F 1 , F 2 , F n . 9. Моногибридное – скрещивание особей с одним контрастным признаком. Закономерности наследования признаков Количественные закономерности наследования признаков открыл чешский ботаник-любитель Г. Мендель. Поставив цель выяснить закономерности наследования признаков, он, прежде всего, обратил внимание на выбор объекта исследования. Для своих опытов Г. Мендель выбрал горох – те его сорта, которые чётко отличались друг от друга по целому ряду признаков. Одним из самых существенных моментов во всей работе было определение числа признаков, по которым должны различаться скрещиваемые растения. Г. Мендель впервые осознал, что начав с самого простого случая – различия родителей по одному-единственному признаку и постепенно усложняя задачу, можно надеяться распутать весь клубок закономерностей передачи признаков из поколения в поколение, т.е. их наследования. Здесь выявилась строгая математичность его мышления. Именно такой подход позволил Г. Менделю чётко планировать дальнейшее усложнение экспериментов. В этом отношении Мендель стоял выше всех современных ему биологов. Другой важной особенностью его исследований было то, что он выбрал для экспериментов организмы, относящиеся к чистым линиям, т.е. такие растения, в ряду поколений которых при самоопылении не наблюдалось расщепления по изучаемому признаку. Не менее важно и то, что он наблюдал за наследованием альтернативных, т.е. контрастных признаков. Например, цветки одного растения были пурпурные, а другого – белыми, рост растения высокий или низкий, бобы гладкие или морщинистые т.д. Сравнивая результаты опытов и теоретические расчёты, Г. Мендель особенно подчёркивал среднестатистический характер открытых им закономерностей. Таким образом, метод скрещивания особей, отличающихся альтернативными признаками, т.е. гибридизации, с последующим строгим учётом распределения родительских признаков у потомков, получил название гибридиологического. Закономерности наследования признаков, выявление Г. Менделем и подтверждение многими биологами на самых разных объектах, в настоящее время формулируют в виде законов, носящих всеобщий характер. Закон единообразия первого поколения гибридов Моногибридное скрещивание. Для иллюстрации закона единообразия первого поколения – первого закона Менделя, воспроизведём его опыты по моногибридному скрещиванию растений гороха. Моногибридным называется скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных признаков. Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух вариантов признака, развитие которого обусловлено парой аллельных генов. Например, признак – цвет семян, варианты – жёлтый или зелёный. Все остальные признаки, свойственные данным организмам, во внимание не принимаются. Если скрестить растения гороха с жёлтыми и зелёными семенами, то у всех полученных в результате этого скрещивания потомков – гибридов семена будут жёлтыми. Такая же картина наблюдается при скрещивании растений, имеющих гладкую и морщинистую форму семян – все семена у гибридов будут гладкими. Следовательно, у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один. Второй признак как бы исчезает, не проявляется. Преобладание у гибрида признака одного из родителей Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, противоположный, т.е. подавляемый признак – рецессивным. Доминантный признак принято обозначать прописной буквой (А), рецессивный – строчной (а). Мендель использовал в опытах растения, относящиеся к разным чистым линиям, или сортам, потомки которых в длинном ряду поколений были сходны с родителями. Следовательно, у этих растений оба аллельных гена одинаковы. Таким образом, если в генотипе организма есть два одинаковых аллельных гена, т.е. два абсолютно идентичных по последовательности нуклеотидов гена, такой организм называется гомозиготным. Организм может быть гомозиготным по доминантным (АА) или рецессивным (аа) генам. Если же аллельные гены отличаются друг от друга по последовательности нуклеотидов, например, один доминантный, а другой рецессивный (Аа) такой организм называется гетерозиготным. Первый закон Менделя называют также законом доминирования или единообразия, так как все особи первого поколения имеют одинаковое проявление признака, присущего одному из родителей. Формулируется он так: При скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозигот), отличающихся друг от друга по паре альтернативных признаков, всё первое поколение гибридов (F 1) окажется единообразным и будет нести признак одного родителя. В отношении окраски Мендель установил, что красный или чёрный цвет будет доминировать над белым, промежуточными цветами будут розовый и серый, разной насыщенности. Мендель предложил графические обозначения признаков: Р – родители, ♂ – мужская особь, ♀ – женская особь,
, – гаметы, X – скрещивание, F 1 , F 2 , F n – потомство. Первый закон Менделя представлен на рисунке 1.

Рисунок 1. Первый закон Менделя

Всё потомство имеет одинаковую промежуточную окраску, что не противоречит первому закону Менделя.

Контрольные вопросы

1. Биологический материал Менделя. 2. Альтернативные признаки в опытах Менделя. 3. Чистые линии и их определение. 4. Сущность гибридиологического метода. 5. Моногибридное скрещивание. 6. Доминантные и рецессивные признаки. 7. Аллельные гены. 8. Первый закон Менделя. Закон единообразия.

Тема 4.2.1 Неполное доминирование генов

Терминология 1. Аллельные гены – гены, расположенные в одинаковых локусах гомологичных хромосом. 2. Доминантный признак – подавляющий развитие другого. 3. Рецессивный признак – подавляемый. 4. Гомозигота – зигота имеющая одинаковые гены. 5. Гетерозигота – зигота имеющая разные гены. 6. Расщепление – расхождение признаков в потомстве. 7. Кроссинговер – перехлест хромосомы. В гетерозиготном состоянии доминантный ген не всегда полностью подавляет проявление рецессивного гена. В ряде случаев гибрид F 1 не воспроизводит полностью не одного из родительских признаков и выражение признака носит промежуточный характер с большим или меньшим уклонением к доминантному или рецессивному состоянию. Но все особи этого поколения проявляют единообразие по данному признаку. Промежуточный характер наследования в предыдущей схеме не противоречит первому закону Менделя, так как все потомки F 1 единообразны. Неполное доминирование – широко распространённое явление. Оно обнаружено при изучении наследования окраски цветка у львиного зева, строения перьев птиц, окраска шерсти крупного рогатого скота и овец, биохимических признаков у человека и т.д. Множественный аллелизм. До сих пор разбирались примеры, в которых один и тот же ген был представлен двумя аллелями – доминантной (А) и рецессивной (а). Эти два состояния гена возникают вследствие мутирования. Ген может мутировать неоднократно. В результате возникает несколько вариантов аллельных генов. Совокупность этих аллельных генов, определяющих многообразие вариантов признака, называется серией аллельных генов. Возникновение такой серии вследствие неоднократного мутирования одного гена называется множественным аллелизмом или множественным аллеломорфизмом. Ген А может мутировать в состояние а 1 , а 2 , а 3 , а n . Ген В, находящийся в другом локусе – в состояние b 1 , b 2 , b 3 , b n . Например, у мухи дрозофилы известна серия аллелей по гену окраски глаз, состоящая из 12 членов: красная, коралловая, вишнёвая, абрикосовая и т.д. до белой, определяемым рецессивным геном . У кроликов существует серия множественных аллелей по окраске шерсти. Это обусловливает развитие сплошной окраски или отсутствие пигментации (альбинизм). Члены одной серии аллелей могут находиться в разных доминантно-рецессивных отношениях друг с другом. Следует помнить, что в генотипе диплоидных организмов могут находиться только два гена из серии аллелей. Остальные аллели данного гена в разных сочетаниях попарно входят в генотипы других особей данного вида. Таким образом, множественный аллелизм характеризует разнообразие генофонда, т.е. совокупность всех генов, входящих в состав генотипов определённой группы особей или целого вида. Другими словами, множественный аллелизм является видовым, а не индивидуальным признаком. Второй закон Менделя – Закон расщепления Если потомков первого поколения, одинаковых по изучаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей появляются в определённом числовом соотношении: 3 / 4 особей будут иметь доминантный признак, 1 / 4 – рецессивный. По генотипу в F 2 окажется 25% особей, гомозиготных по доминантным аллелям, 50% организмов будут гетерозиготны и 25% потомства составят гомозиготные по рецессивным аллелям организмы. Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть – рецессивный, называется расщеплением. Следовательно, расщепление – это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении. Таким образом, второй закон Менделя (см. рис.2) можно сформулировать следующим образом: при скрещивании двух потомков первого поколения между собой (двух гетерозигот) во втором поколении наблюдается расщепление в определённом числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1.


Рисунок 2. Второй закон Менделя

При неполном доминировании в потомстве гибридов F 2 , расщепление по генотипу и фенотипу совпадает (1:2:1). Закон чистоты гамет Этот закон отражает сущность процесса образования гамет в мейозе. Мендель предположил, что наследственные факторы (гены) при образовании гибридов не смешиваются, а сохраняются в неизменном виде. В теле гибрида F, от скрещивания родителей, различающихся по альтернативным признакам, присутствуют оба фактора – доминантный и рецессивный. В виде признака проявляется доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки – гаметы. Следовательно, необходимо допустить, что каждая гамета несёт только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несёт рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, несущих по доминантному фактору, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении (F 2) рецессивного признака одного из родителей (Р) может иметь место только при соблюдении двух условий: 1. Если у гибридов наследственные факторы сохраняются в неизменном виде. 2. Если половые клетки содержат только один наследственный фактор из аллельной пары. Расщепление признаков в потомстве при скрещивании гетерозиготных особей, Мендель объяснил тем, что гаметы генетически чисты, т.е. несут только один ген из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары (из каждой аллельной пары). Цитологическим доказательством закона чистоты гамет является поведение хромосомы в мейозе: в первом мейотическом делении в разные клетки попадают гомологичные хромосомы, а в анафазе второго – дочерние хромосомы, которые вследствие кроссинговера могут содержать разные аллели одного и того же гена. Известно, что в каждой клетке организма имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы содержат два одинаковых аллельных гена. Образование генетически «чистых» гамет показано на схеме на рисунке 3.


Рисунок 3. Образование «чистых» гамет

При слиянии мужских и женских гамет образуется гибрид, имеющий диплоидный набор хромосом (см. рис.4).

Рисунок 4. Образование гибрида

Как видно из схемы, половину хромосом зигота получает от отцовского организма, половину – от материнского. В процессе образования гамет у гибрида гомологичные хромосомы во время первого мейотического деления так же попадают в разные клетки (см. рис.5).

Рисунок 5. Образование двух сортов гамет

Образуется два сорта гамет по данной аллельной паре. Таким образом, цитологической основой закона чистоты гамет, а так же расщепление признаков у потомства при моногибридном скрещивании является расхождение гомологических хромосом и образование гаплоидных клеток в мейозе. Анализирующее скрещивание Разработанный Менделем гибридиологический метод изучения наследственности позволяет установить, гомозиготен или гетерозиготен организм, имеющий доминантный фенотип по исследуемому гену. Чиста ли порода? Для этого скрещивают особь с неизвестным генотипом и организм, гомозиготный по рецессивной аллели, имеющий рецессивный фенотип. Если доминантная особь гомозиготна, потомство от такого скрещивания будет единообразным и расщепления не произойдёт (см. рис.6).

Рисунок 6. Скрещивание доминантных особей.

Иная картина получится, если исследуемый организм гетерозиготен (см. рис.7).


Рисунок 7. Скрещивание гетерозиготеных особей.

Расщепление произойдёт в отношении 1:1 по фенотипу. Такой результат скрещивая – доказательство образования у одного из родителей двух сортов гамет, т.е. его гетерозиготность – не чистая порода (см. рис. 8).


Рисунок 8. Расщепление произойдёт в отношении 1:1 по фенотипу.

Контрольные вопросы

1. Неполное доминирование и его проявление в природе. 2. Сущность множественного аллелизма. 3. II-закон Менделя. Закон расщепления. 4. Закон чистоты гамет. 5. Цитологические доказательства закона чистоты гамет. 6. Анализирующее скрещивание, его сущность и значение.

Тема 4.2.2 III закон Менделя - закон независимого

комбинирования признаков

Терминология 1. Дигибритное скрещивание – скрещивание по двум контрастным признакам. 2. Дигетерозиготные организмы – организмы гетерозиготные по двум парам аллельных генов. 3. Решетка Паннета – графический метод подсчета результатов скрещивания. 4. Рекомбинация – перекомбинирование признаков. 5. Кроссинговер – появление новых признаков при перехлесте хромосом. 6. Морганида – расстояние между генами. Дигибридное и полигибридное скрещивание Организмы отличаются друг от друга по многим признакам. Установить закономерности наследования двух и более пар альтернативных признаков можно путём дигибридного или полигибридного скрещивания. Для дигибридного скрещивания, Мендель использовал гомозиготные растения гороха, отличающиеся по двум парам признаков – окраске семян (жёлтые и зелёные) и форме семян (гладкие и морщинистые). Доминантными были – жёлтая окраска (А) и гладкая форма семян (В). Каждое растение образует один сорт гамет по изучаемым аллелям. При слиянии гамет всё потомство будет единообразным (см. рис.9).


Рисунок 9. Слияние гамет

Организмы, гетерозиготные по двум парам аллельных генов, называются дигетерозиготными. При образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в первом делении мейоза, ген А может попасть в одну гамету с геном В или с геном b, точно так же, как ген а может объединиться в одной гамете с геном В или с геном b (см. рис.10).


Рисунок 10. Образование гамет у гибрида

Таблица 1.

Обработка результатов дигибридного скрещивания

AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb
↓ → А – жёлтая окраска. а – зелёная окраска. В – круглая форма. b – морщинистая форма. Поскольку в каждом организме образуется много половых клеток, в силу статистических закономерностей у гибрида образуется четыре сорта гамет в одинаковом количестве (по 25%) АВ, Аb, аВ, аb. Во время оплодотворения, каждая из четырёх типов гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Паннета. По вертикали и горизонтали выписаны гаметы родителей. В квадратах – генотипы зигот, образующиеся при слиянии гамет. Видно, что по фенотипу потомство делится на четыре группы: 9 жёлтых гладких, 3 жёлтых морщинистых, 3 зелёных гладких, 1 жёлтая морщинистая. Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа гладких к числу морщинистых для каждой пары равно 3:1. Таким образом, в дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведёт себя так же, как в моногибридном скрещивании, т.е. независимо от другой пары признаков. При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают различные комбинации генов. Независимое распределение генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь в том случае, если пары аллельных генов расположены в разных парах гомологичных хромосом. Третий закон Менделя , или закон независимого комбинирования, можно сформулировать следующим образом: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум парам альтернативных признаков, гены и соответствующие признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. Третий закон применим лишь к наследованию аллельных пар, находящихся в разных парах гомологичных хромосом. На законах Менделя основан анализ расщепления и в более сложных случаях – при различии особей по трём и более парам признаков. Если родительские особи различаются по одной паре признаков, во втором поколении наблюдается расщепление признаков в отношении 3:1, для дигибридного скрещивания это будет (3:1) 2 или 9:3:3:1, для тригибридного (3:1) 3 и т.д. Можно также рассчитать число сортов гамет, образующихся у гибридов, по формуле 2 n , где n – число пар генов, по которым различаются родительские особи.

Законы наследования признаков Г. Менделя описывают первичные принципы передачи наследственных характеристик от родительских организмов к их детям; эти принципы лежат в основе классической генетики. Эти законы были открыты Менделем в результате скрещивания организмов (в данном случае, растений) с различными генотипами. Обычно описывают одно правило и два закона.

Правило единообразия гибридов первого поколения

При скрещивании посевного гороха с устойчивыми признаками - пурпурными и белыми цветками, Мендель заметил, что взошедшие гибриды были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыты, использовал другие признаки. Например, если он скрещивал горох с жёлтыми и зелёными семенами, у потомков семена были жёлтыми, при скрещивании гороха с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

Итак, гибриды первого поколения всегда приобретают один из родительских признаков . Один признак (более силь­ный, доминантный) всегда подавляет другой (более слабый, рецессивный). Такое явление называется полным доминированием .

Если применить вышеуказанное правило к человеку, скажем, на примере карих и голубых глаз , то оно объясняется сле­дующим образом. Если у одного гомозиготного родителя в геноме оба гена определяют карий цвет глаз (обозначим такой генотип как АА ), а у другого, тоже гомозиготного, оба гена определяют голубой цвет глаз (обозначим такой генотип как аа ), то гаплоидные гаметы, продуцируемые ими, всегда будут нести либо ген А , либо а (см. схему ниже).

Схема передачи признаков при скрещивании гомозиготных организмов

Тогда все дети будут иметь генотип Аа , но у всех глаза будут карие, поскольку ген карих глаз доминирует над геном голубых глаз.

Теперь рассмотрим, что произойдёт, если скрещиваются гетерозиготные организмы (или гибриды первого поколения). В этом случае произойдёт расщепление признаков в определённых количественных отношениях.

Закон расщепления признаков, или Первый закон Менделя

Если гетерозиготных потомков первого поколения, одинаковых по изучаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей появляются в определённом численном соотноше­нии: 3/4 особей будут иметь доминантный признак, 1/4 - рецессивный (см. схему ниже).

Схема наследования признаков при скрещивании гетерозиготных организмов

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением . Как мы понимаем, рецессивный признак у гибридов первого поколения не ис­чез, а был всего лишь подавлен и проявился во втором гибридном по­колении. Мендель первым понял, что при образовании гибридов наследственные факторы не смеши­ваются и не «размываются», а со­храняются в неизменном виде. В гибридном организме присутствуют оба фактора (гена), но в виде при­знака проявляет себя только доми­нантный наследственный фактор.

Связь между поколениями при по­ловом размножении осуществляется через половые клетки, каждая гамета несёт только один фактор из па­ры. Слияние двух гамет, каждая из которых несёт один рецессив­ный наследственный фактор, приведёт к появлению организма с рецессивным признаком. Слияние гамет, каждая из которых несёт доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, приводит к развитию организма с доминантным признаком.

Расщепление при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы несут только один ген из аллельной пары (закон чистоты гамет ). Действительно, такое возможно только если гены остаются неизменными и гаметы содержат только по одному гену из пары. Изучать соотношения признаков удобно при помощи так называемой решётки Пеннета:

А (0,5) а (0,5)
А (0,5) АА (0,25) Аа (0,25)
а (0,5) Аа (0,25) аа (0,25)

В силу статистической вероятности при достаточно большом количестве гамет в потомстве 25% генотипов будут гомозиготными доминантными, 50% - гетерозиготными, 25% - гомозиготными рецессивными, т. е. устанавливается математическое соотношение 1АА :2Аа :1аа . Соответственно, по фенотипу потомство второго поколения при моногибридном скрещивании распределяется в отношении 3:1 - 3 части особей с доминантным признаком, 1 часть особей с рецессивным.

Не следует забывать, что распределение генов и их попадание в гаметы носит вероятностный характер. Подход к анализу потомков был у Менделя количественный, статистический: все потомки с данным состоянием призна­ка (например - горошины гладкие или морщинистые) объединялись в одну груп­пу, подсчитывалось их число, которое сравнивали с числом потомков с другим состоянием признака (горошины морщинистые). Такой попарный анализ обес­печил успех его наблюдений. В случае с человеком наблюдать такое распреде­ление бывает очень сложно - нужно, чтобы у одной пары родителей была хотя бы дюжина детей, что бывает довольно редким явлением в современном обществе. Так что вполне может случиться, что у кареглазых родителей рождается один единственный ребенок, и тот голубоглазый, что, на первый взгляд, нарушает все законы генетики. В то же время, если экспериментиро­вать с дрозофилой или лабораторными мышами, менделевские законы наблю­дать довольно легко.

Следует сказать, что в известном смысле Менделю повезло - он с самого начала избрал в качестве объекта подходящее растение - цветной горошек. Если бы ему попались, например, такие растения как ночная красавица или львиный зев, то результат был бы непред­сказуем. Дело в том, что у львиного зева гетерозиготные растения, полученные при скрещивании гомозиготных растений с красными и белыми цветками, имеют розовые цветки. При этом ни один из аллелей не может быть назван ни доминантным, ни рецессивным. Такое явление можно объяснить тем, что сложные биохимические процессы, обусловленные разной работой аллелей, не обязательно приводят к альтернативным взаимоисключающим результатам. Результат может быть и промежуточным, в зависимости от особенностей обмена веществ в данном организме, в котором всегда есть множество вариантов, шунтирующих механизмов или параллельно существующих процессов с различными внешними проявлениями.

Это явление называется неполным доминированием или кодоминированием, оно достаточно часто встречается, в том числе и у человека. Примером является система групп крови человека MN (заметим попутно, что это лишь одна из систем, существует множество классификаций групп крови). В своё время Ландштейнер и Левин объяснили это явление тем, что эритро­циты могут нести на своей поверхности либо один антиген (М), либо другой (N), либо оба вместе (МN). Если в двух первых случаях мы имеем дело с гомозиготами (ММ и NN), то при гетерозиготном состоянии (МN) проявляют себя оба аллеля, при этом оба проявляются (доминируют), отсюда и название - кодоминирование.

Закон независимого наследования признаков, или Второй за­кон Менделя

Этот закон описывает распределение признаков при так называемом дигибридном и полигибридном скрещивании, т. е. когда скрещива­емые особи отличаются по двум и более признакам. В опытах Менде­ля скрещивались растения, отличающиеся по нескольким парам признаков, таким как: 1) белые и пурпурные цветы, и 2) жёлтые или зелёные семена. При этом наследование каждого признака следовало первым двум законам, и признаки комбинировались независимо друг от друга . Как и положено, первое поколение после скрещивания об­ладало доминантным фенотипом по всем признакам. Второе поколе­ние следовало формуле 9:3:3:1, то есть 9/16 экземпляров были с пурпурными цветами и жёлтыми горошинами, 3/16 - с белыми цвета­ми и жёлтыми горошинами, ещё 3/16 - с пурпурными цветами и зелё­ными горошинами и, наконец, 1/16 - с белыми цветами и зелёными горошинами. Это происходило потому, что Мендель удачно выбрал признаки, гены которых находились на разных хромосомах гороха. Второй закон Менделя выполняется как раз только в случаях, когда анализируемые пары генов расположены на разных хромосомах. По правилу частоты гамет признаки комбинируются независимо друг от друга, а если они находятся на разных хромосомах, то и наследование признаков происходит независимо.

1-й и 2-й законы Менделя универсальны, а вот из 3-го закона постоянно встречаются исключения. Причина этого становится понятной, если вспомнить, что в одной хромосоме находится множество генов (у человека - от нескольких сотен до тысячи и более). Если же гены находятся на одной и той же хромосоме, то может иметь место сцепленное наследование . В этом случае признаки передаются попарно или группами. Гены, находящиеся на одной хромосоме, получили в генетике название группы сцепления . Чаще всего вместе передаются признаки, определяемые генами, находящимися на хромосоме близко друг к другу. Такие гены называются тесно сцепленными . В то же время, иногда сцепленно наследуются гены, расположенные далеко друг от друга. Причиной такого разного поведения генов является особое явление обмена материалом между хромосомами во время гаметообразования, в частности, на стадии профа­зы первого деления мейоза.

Это явление было детально изучено Барбарой Мак-Клинток (Нобелевская премия по физиологии и медицине в 1983 г.) и получило название кроссинговера. Кроссинговер - это не что иное, как обмен гомологичными участ­ками между хромосомами. Получается, что каждая конкретная хромосома при передаче из поколения в поколение не остаётся неизменной, она может «прихватить с собой» гомологичный участок из своей парной хромосомы, отдав той, в свою очередь, участок своей ДНК.

В случае человека довольно трудно бывает установить сцепление генов, а также выявить кроссинговер из-за невозможности произволь­ных скрещиваний (нельзя же заставить людей давать потомство в соответствии с какими-то научными задачами!), поэтому такие данные получены в основном на растениях, насекомых и животных. Тем не менее, благодаря исследованию многодетных се­мей, в которых присутствуют несколько поколений, известны приме­ры аутосомного сцепления (т. е. совместной передачи генов, расположенных на аутосомах) и у человека. Например, существует тесное сцепление между генами, контролирующими резус-фактор (Rh) и систему антигенов групп крови MNS. У человека более известны случаи сцепления тех или иных признаков с полом, т. е. в связи с половыми хромосомами.

Кроссинговер в целом усиливает комбинативную изменчивость , т. е. способствует большему многообразию человеческих генотипов. В связи с этим, этот процесс имеет большое значение для. Используя тот факт, что чем дальше друг от друга расположены на одной хромосоме гены, тем в большей степени они подвержены кроссинговеру, Альфред Стертевант построил первые карты хромосом дрозофилы. Сегодня получены полные физические карты всех человеческих хромосом, т. е. известно, в какой последовательности и какие гены на них расположены.