Вероятностный (статистический) метод оценки рисков. Вероятностно-статистические методы моделирования экономических систем Числовые характеристики случайных величин

Часть 1. Фундамент прикладной статистики

1.2.3. Суть вероятностно-статистических методов принятия решений

Как подходы, идеи и результаты теории вероятностей и математической статистики используются при принятии решений?

Базой является вероятностная модель реального явления или процесса, т.е. математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются прежде всего для описания неопределенностей, которые необходимо учитывать при принятии решений. Имеются в виду как нежелательные возможности (риски), так и привлекательные («счастливый случай»). Иногда случайность вносится в ситуацию сознательно, например, при жеребьевке, случайном отборе единиц для контроля, проведении лотерей или опросов потребителей.

Теория вероятностей позволяет по одним вероятностям рассчитать другие, интересующие исследователя. Например, по вероятности выпадения герба можно рассчитать вероятность того, что при 10 бросаниях монет выпадет не менее 3 гербов. Подобный расчет опирается на вероятностную модель, согласно которой бросания монет описываются схемой независимых испытаний, кроме того, выпадения герба и решетки равновозможны, а потому вероятность каждого из этих событий равна ½. Более сложной является модель, в которой вместо бросания монеты рассматривается проверка качества единицы продукции. Соответствующая вероятностная модель опирается на предположение о том, что контроль качества различных единиц продукции описывается схемой независимых испытаний. В отличие от модели с бросанием монет необходимо ввести новый параметр – вероятность р того, что единица продукции является дефектной. Модель будет полностью описана, если принять, что все единицы продукции имеют одинаковую вероятность оказаться дефектными. Если последнее предположение неверно, то число параметров модели возрастает. Например, можно принять, что каждая единица продукции имеет свою вероятность оказаться дефектной.

Обсудим модель контроля качества с общей для всех единиц продукции вероятностью дефектности р . Чтобы при анализе модели «дойти до числа», необходимо заменить р на некоторое конкретное значение. Для этого необходимо выйти из рамок вероятностной модели и обратиться к данным, полученным при контроле качества. Математическая статистика решает обратную задачу по отношению к теории вероятностей. Ее цель – на основе результатов наблюдений (измерений, анализов, испытаний, опытов) получить выводы о вероятностях, лежащих в основе вероятностной модели. Например, на основе частоты появления дефектных изделий при контроле можно сделать выводы о вероятности дефектности (см. теорему Бернулли выше). На основе неравенства Чебышева делались выводы о соответствии частоты появления дефектных изделий гипотезе о том, что вероятность дефектности принимает определенное значение.

Таким образом, применение математической статистики опирается на вероятностную модель явления или процесса. Используются два параллельных ряда понятий – относящиеся к теории (вероятностной модели) и относящиеся к практике (выборке результатов наблюдений). Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию (теоретический ряд) соответствует выборочное среднее арифметическое (практический ряд). Как правило, выборочные характеристики являются оценками теоретических. При этом величины, относящиеся к теоретическому ряду, «находятся в головах исследователей», относятся к миру идей (по древнегреческому философу Платону), недоступны для непосредственного измерения. Исследователи располагают лишь выборочными данными, с помощью которых они стараются установить интересующие их свойства теоретической вероятностной модели.

Зачем же нужна вероятностная модель? Дело в том, что только с ее помощью можно перенести свойства, установленные по результатам анализа конкретной выборки, на другие выборки, а также на всю так называемую генеральную совокупность. Термин «генеральная совокупность» используется, когда речь идет о большой, но конечной совокупности изучаемых единиц. Например, о совокупности всех жителей России или совокупности всех потребителей растворимого кофе в Москве. Цель маркетинговых или социологических опросов состоит в том, чтобы утверждения, полученные по выборке из сотен или тысяч человек, перенести на генеральные совокупности в несколько миллионов человек. При контроле качества в роли генеральной совокупности выступает партия продукции.

Чтобы перенести выводы с выборки на более обширную совокупность, необходимы те или иные предположения о связи выборочных характеристик с характеристиками этой более обширной совокупности. Эти предположения основаны на соответствующей вероятностной модели.

Конечно, можно обрабатывать выборочные данные, не используя ту или иную вероятностную модель. Например, можно рассчитывать выборочное среднее арифметическое, подсчитывать частоту выполнения тех или иных условий и т.п. Однако результаты расчетов будут относиться только к конкретной выборке, перенос полученных с их помощью выводов на какую-либо иную совокупность некорректен. Иногда подобную деятельность называют «анализ данных». По сравнению с вероятностно-статистическими методами анализ данных имеет ограниченную познавательную ценность.

Итак, использование вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик – вот суть вероятностно-статистических методов принятия решений.

Подчеркнем, что логика использования выборочных характеристик для принятия решений на основе теоретических моделей предполагает одновременное использование двух параллельных рядов понятий, один из которых соответствует вероятностным моделям, а второй – выборочным данным. К сожалению, в ряде литературных источников, обычно устаревших либо написанных в рецептурном духе, не делается различия между выборочными и теоретическими характеристиками, что приводит читателей к недоумениям и ошибкам при практическом использовании статистических методов.

Предыдущая

При проведении психолого-педагогических исследований важная роль отводится математическим методам моделирования процессов и обработки экспериментальных данных. К таким методам следует отнести, прежде всего, так называемые, вероятностно-статистические методы исследования. Это связано с тем, что на поведение как отдельного человека в процессе его деятельности, так и человека в коллективе существенное влияние оказывает множество случайных факторов. Случайность не позволяет описывать явления в рамках детерминированных моделей, т. к. проявляется, как недостаточная регулярность в массовых явлениях и, следовательно, не дает возможность с достоверностью предсказывать наступление определенных событий. Однако при изучении таких явлений обнаруживаются определенные закономерности. Нерегулярность, свойственная случайным событиям, при большом количестве испытаний, как правило, компенсируется появлением статистической закономерности, стабилизацией частот наступлений случайных событий. Следовательно, данные случайные события имеют определенную вероятность. Существуют два принципиально различающихся вероятностно-статистических метода психолого-педагогических исследований: классический и неклассический. Проведем сравнительный анализ этих методов.

Классический вероятностно-статистический метод. В основе классического вероятностно-статистического метода исследования лежат теория вероятностей и математическая статистика. Данный метод применяется при изучении массовых явлений случайного характера, он включает несколько этапов, основные из которых следующие.

1. Построение вероятностной модели реальности, исходя из анализа статистических данных (определение закона распределения случайной величины). Естественно, что закономерности массовых случайных явлений выражаются тем более отчетливо, чем больше объем статистического материала. Выборочные данные, полученные при проведении эксперимента, всегда ограничены и носят, строго говоря, случайный характер. В связи с этим важная роль отводится обобщению закономерностей, полученных на выборке, и распространению их на всю генеральную совокупность объектов. С целью решения этой задачи принимается определенная гипотеза о характере статистической закономерности, которая проявляется в исследуемом явлении, например, гипотеза о том, что исследуемое явление подчиняется закону нормального распределения. Такая гипотеза носит название нулевой гипотезы, которая может оказаться ошибочной, поэтому наряду с нулевой гипотезой еще выдвигается и альтернативная или конкурирующая гипотеза. Проверка того насколько полученные экспериментальные данные соответствуют той или иной статистической гипотезе осуществляется с помощью так называемых непараметрических статистических критериев или критериев согласия. В настоящее время широко используются критерии согласия Колмогорова, Смирнова, омега-квадрат и др. . Основная идея этих критериев состоит в измерении расстояния между функцией эмпирического распределения и функцией полностью известного теоретического распределения. Методология проверки статистической гипотезы строго разработана и изложена в большом количестве работ по математической статистике.

2. Проведение необходимых расчетов математическими средствами в рамках вероятностной модели. В соответствии с установленной вероятностной моделью явления проводятся вычисления характеристических параметров, например, таких как математическое ожидание или среднее значение, дисперсия, стандартное отклонение, мода, медиана, показатель асимметрии и др.

3. Интерпретация вероятностно-статистических выводов применительно к реальной ситуации.

В настоящее время классический вероятностно-статистический метод хорошо разработан и широко используется при проведении исследований в различных областях естественных, технических и общественных наук. Подробное описание сути данного метода и его применения к решению конкретных задач можно найти в большом количестве литературных источников, например в .

Неклассический вероятностно-статистический метод. Неклассический вероятно-статистический метод исследований отличается от классического тем, что он применяется не только к массовым, но и к отдельным событиям, имеющим принципиально случайный характер. Данный метод может быть эффективно использован при анализе поведения индивида в процессе выполнения той или иной деятельности, например, в процессе усвоения знаний учащимся . Особенности неклассического вероятностно-статистического метода психолого-педагогических исследований рассмотрим на примере поведения учащихся в процессе усвоения знаний.

Впервые вероятностно-статистическая модель поведения учащихся в процессе усвоения знаний была предложена в работе . Дальнейшее развитие этой модели было сделано в работе . Учение как вид деятельности, цель которого приобретение человеком знаний, умений и навыков, зависит от уровня развития сознания учащегося. В структуру сознания входят такие познавательные процессы, как ощущение, восприятие, память, мышление, воображение. Анализ этих процессов показывает, что им присущи элементы случайности, обусловленные случайным характером психического и соматического состояний индивида, а также физиологическим, психологическим и информационным шумами при работе головного мозга. Последнее привело при описании процессов мышления к отказу от использования модели детерминистской динамической системы в пользу модели случайной динамической системы . Это означает, что детерминизм сознания реализуется через случайность. Отсюда можно заключить, что знания человека, являющиеся фактически продуктом сознания, также имеют случайный характер, и, следовательно, для описания поведения каждого отдельного учащегося в процессе усвоения знаний может быть использован вероятностно-статистический метод.

В соответствии с этим методом учащийся идентифицируется функцией распределения (плотностью вероятности), определяющей вероятность нахождения его в единичной области информационного пространства. В процессе обучения функция распределения, с которой идентифицируется учащийся, эволюционируя, движется в информационном пространстве. Каждый учащийся обладает индивидуальными свойствами и допускается независимая локализация (пространственная и кинематическая) индивидов друг относительно друга.

На основе закона сохранения вероятности записывается система дифференциальных уравнений, представляющих собой уравнения непрерывности, которые связывают изменение плотности вероятности за единицу времени в фазовом пространстве (пространстве координат, скоростей и ускорений различных порядков) с дивергенцией потока плотности вероятности в рассматриваемом фазовом пространстве. В проведен анализ аналитических решений ряда уравнений непрерывности (функций распределения), характеризующих поведение отдельных учащихся в процессе обучения.

При проведении экспериментальных исследований поведения учащихся в процессе усвоения знаний используется вероятностно-статистическое шкалирование , в соответствии с которым шкала измерений представляет собой упорядоченную систему , где A - некоторое вполне упорядоченное множество объектов (индивидов), обладающих интересующими нас признаками (эмпирическая система с отношениями); Ly - функциональное пространство (пространство функций распределения) с отношениями; F - операция гомоморфного отображения A в подсистему Ly; G - группа допустимых преобразований; f - операция отображения функций распределения из подсистемы Ly на числовые системы с отношениями n-мерного пространства M. Вероятностно-статистическое шкалирование применяется для нахождения и обработки экспериментальных функций распределения и включает три этапа.

1. Нахождение экспериментальных функций распределения по результатам контрольного мероприятия, например, экзамена. Типичный вид индивидуальных функций распределения, найденных при использовании двадцатибалльной шкалы, представлен на рис. 1. Методика нахождения таких функций описана в .

2. Отображение функций распределения на числовое пространство. С этой целью проводится расчет моментов индивидуальных функций распределения. На практике, как правило, достаточно ограничиться определением моментов первого порядка (математического ожидания), второго порядка (дисперсии) и третьего порядка, характеризующего асимметрию функции распределения.

3. Ранжирование учащихся по уровню знаний на основе сравнения моментов различных порядков их индивидуальных функций распределения.

Рис. 1. Типичный вид индивидуальных функций распределения студентов, получивших на экзамене по общей физике различные оценки : 1 - традиционная оценка «2»; 2 - традиционная оценка «3»; 3 - традиционная оценка «4»; 4 - традиционная оценка «5»

На основе аддитивности индивидуальных функций распределения в найдены экспериментальные функции распределения для потока студентов (рис. 2).


Рис. 2. Эволюция полной функции распределения потока студентов, аппроксимированной гладкими линиями : 1 - после первого курса; 2 - после второго курса; 3 - после третьего курса; 4 - после четвертого курса; 5 - после пятого курса

Анализ данных, представленных на рис. 2, показывает, что по мере продвижения в информационном пространстве функции распределения расплываются. Это происходит вследствие того, что математические ожидания функций распределения индивидов движутся с разными скоростями, а сами функции расплываются из-за дисперсии. Дальнейший анализ данных функций распределения может быть проведен в рамках классического вероятностно-статистического метода.

Обсуждение результатов. Анализ классического и неклассического вероятностно-статистических методов психолого-педагогических исследований показал, что между ними имеется существенное отличие. Оно, как это можно понять из сказанного выше, заключается в том, что классический метод применим лишь к анализу массовых событий, а неклассический метод применим как к анализу массовых, так и одиночных событий. В связи с этим классический метод может быть условно назван массовым вероятностно-статистическим методом (МВСМ), а неклассический метод - индивидуальным вероятностно-статистическим методом (ИВСМ). В 4] показано, что ни один из классических методов оценки знаний учащихся в рамках вероятностно-статистической модели индивида не может быть применен для этих целей.

Отличительные особенности методов МВСМ и ИВСМ рассмотрим на примере измерения полноты знаний учащихся. С этой целью проведем мысленный эксперимент. Предположим, что имеется большое количество абсолютно одинаковых по психическим и физическим характеристикам учащихся, имеющих одинаковую предысторию, и пусть они, не взаимодействуя друг с другом, одновременно участвуют в одном и том же познавательном процессе, испытывая абсолютно одинаковое строго детерминированное воздействие. Тогда в соответствии с классическими представлениями об объектах измерения все учащиеся должны были бы получить одинаковые оценки полноты знаний с любой заданной точностью измерений. Однако в реальности при достаточно большой точности измерений оценки полноты знаний учащихся будут различаться . Объяснить такой результат измерений в рамках МВСМ не представляется возможным, т. к. исходно предполагается, что воздействие на абсолютно одинаковых невзаимодействующих между собой учащихся имеет строго детерминированный характер. Классический вероятностно-статистический метод не учитывает того, что детерминизм процесса познания реализуется через случайность, внутренне присущую каждому познающему окружающий мир индивиду.

Случайный характер поведения учащегося в процессе усвоения знаний учитывает ИВСМ. Применение индивидуального вероятностно-статистического метода для анализа поведения рассматриваемого идеализированного коллектива учащихся показало бы, что указать точно положение каждого учащегося в информационном пространстве нельзя, можно лишь говорить вероятности нахождения его в той или иной области информационного пространства. Фактически каждый учащийся идентифицируется индивидуальной функцией распределения, причем ее параметры, такие как математическое ожидание, дисперсия и др., индивидуальны для каждого учащегося. Это означает, что индивидуальные функции распределения будут находиться в разных областях информационного пространства. Причина такого поведения учащихся заключается в случайном характере процесса познания.

Однако в ряде случаев результаты исследований, добытые в рамках МВСМ, могут быть интерпретированы и в рамках ИВСМ. Предположим, что преподаватель при оценке знаний учащегося использует пятибалльную шкалу измерений. В этом случае погрешность в оценке знаний составляет ±0,5 балла. Следовательно, когда учащемуся выставляется оценка, например, 4 балла, это означает, что его знания находятся в промежутке от 3,5 баллов до 4,5 баллов. Фактически положение индивида в информационном пространстве в данном случае определяется прямоугольной функцией распределения, ширина которой равна погрешности измерения ±0,5 балла, а оценка является математическим ожиданием. Эта погрешность настолько большая, что не позволяет наблюдать истинный вид функции распределения. Однако, несмотря на столь грубую аппроксимацию функции распределения, изучение ее эволюции позволяет получить важную информацию, как о поведении отдельного индивида, так и коллектива учащихся в целом .

На результат измерения полноты знаний учащегося непосредственно или опосредовано влияет сознание преподавателя (измерителя), которому также свойственна случайность. В процессе педагогических измерений фактически имеет место взаимодействие двух случайных динамических систем, идентифицирующих поведение учащегося и преподавателя в данном процессе. В рассмотрено взаимодействие студенческой подсистемы с профессорско-преподавательской подсистемой и показано, что скорость движения математического ожидания индивидуальных функций распределения студентов в информационном пространстве пропорциональна функции воздействия профессорско-преподавательского коллектива и обратно пропорциональна функции инертности, характеризующей неподатливость изменению положения математического ожидания в пространстве (аналог закона Аристотеля в механике).

В настоящее время, несмотря на значительные достижения в разработке теоретических и практических основ измерений при проведении психолого-педагогических исследований, проблема измерений в целом еще далека от решения. Это связано, прежде всего, с тем, что до сих пор не имеется достаточной информации о влиянии сознания на процесс измерения. Аналогичная ситуация сложилась и при решении проблемы измерений в квантовой механике. Так, в работе при рассмотрении концептуальных проблем квантовой теории измерений говорится о том, что разрешить некоторые парадоксы измерений в квантовой механике «… вряд ли возможно без непосредственного включения сознания наблюдателя в теоретическое описание квантового измерения». Далее говорится, что «… непротиворечивым является предположение о том, что сознание может сделать вероятным некоторое событие, даже если по законам физики (квантовой механики) вероятность этого события мала. Сделаем важное уточнение формулировки: сознание данного наблюдателя может сделать вероятным, что он увидит это событие».

3. Суть вероятностно-статистических методов

Как подходы, идеи и результаты теории вероятностей и математической статистики используются при обработке данных – результатов наблюдений, измерений, испытаний, анализов, опытов с целью принятия практически важных решений?

Базой является вероятностная модель реального явления или процесса, т.е. математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются прежде всего для описания неопределенностей, которые необходимо учитывать при принятии решений. Имеются в виду как нежелательные возможности (риски), так и привлекательные («счастливый случай»). Иногда случайность вносится в ситуацию сознательно, например, при жеребьевке, случайном отборе единиц для контроля, проведении лотерей или опросов потребителей.

Теория вероятностей позволяет по одним вероятностям рассчитать другие, интересующие исследователя. Например, по вероятности выпадения герба можно рассчитать вероятность того, что при 10 бросаниях монет выпадет не менее 3 гербов. Подобный расчет опирается на вероятностную модель, согласно которой бросания монет описываются схемой независимых испытаний, кроме того, выпадения герба и решетки равновозможны, а потому вероятность каждого из этих событий равна ½. Более сложной является модель, в которой вместо бросания монеты рассматривается проверка качества единицы продукции. Соответствующая вероятностная модель опирается на предположение о том, что контроль качества различных единиц продукции описывается схемой независимых испытаний. В отличие от модели с бросанием монет необходимо ввести новый параметр – вероятность р того, что единица продукции является дефектной. Модель будет полностью описана, если принять, что все единицы продукции имеют одинаковую вероятность оказаться дефектными. Если последнее предположение неверно, то число параметров модели возрастает. Например, можно принять, что каждая единица продукции имеет свою вероятность оказаться дефектной.

Обсудим модель контроля качества с общей для всех единиц продукции вероятностью дефектности р . Чтобы при анализе модели «дойти до числа», необходимо заменить р на некоторое конкретное значение. Для этого необходимо выйти из рамок вероятностной модели и обратиться к данным, полученным при контроле качества. Математическая статистика решает обратную задачу по отношению к теории вероятностей. Ее цель – на основе результатов наблюдений (измерений, анализов, испытаний, опытов) получить выводы о вероятностях, лежащих в основе вероятностной модели. Например, на основе частоты появления дефектных изделий при контроле можно сделать выводы о вероятности дефектности (см. обсуждение выше сиспользованием теоремы Бернулли). На основе неравенства Чебышева делались выводы о соответствии частоты появления дефектных изделий гипотезе о том, что вероятность дефектности принимает определенное значение.

Таким образом, применение математической статистики опирается на вероятностную модель явления или процесса. Используются два параллельных ряда понятий – относящиеся к теории (вероятностной модели) и относящиеся к практике (выборке результатов наблюдений). Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию (теоретический ряд) соответствует выборочное среднее арифметическое (практический ряд). Как правило, выборочные характеристики являются оценками теоретических. При этом величины, относящиеся к теоретическому ряду, «находятся в головах исследователей», относятся к миру идей (по древнегреческому философу Платону), недоступны для непосредственного измерения. Исследователи располагают лишь выборочными данными, с помощью которых они стараются установить интересующие их свойства теоретической вероятностной модели.

Зачем же нужна вероятностная модель? Дело в том, что только с ее помощью можно перенести свойства, установленные по результатам анализа конкретной выборки, на другие выборки, а также на всю так называемую генеральную совокупность. Термин «генеральная совокупность» используется, когда речь идет о большой, но конечной совокупности изучаемых единиц. Например, о совокупности всех жителей России или совокупности всех потребителей растворимого кофе в Москве. Цель маркетинговых или социологических опросов состоит в том, чтобы утверждения, полученные по выборке из сотен или тысяч человек, перенести на генеральные совокупности в несколько миллионов человек. При контроле качества в роли генеральной совокупности выступает партия продукции.

Чтобы перенести выводы с выборки на более обширную совокупность, необходимы те или иные предположения о связи выборочных характеристик с характеристиками этой более обширной совокупности. Эти предположения основаны на соответствующей вероятностной модели.

Конечно, можно обрабатывать выборочные данные, не используя ту или иную вероятностную модель. Например, можно рассчитывать выборочное среднее арифметическое, подсчитывать частоту выполнения тех или иных условий и т.п. Однако результаты расчетов будут относиться только к конкретной выборке, перенос полученных с их помощью выводов на какую-либо иную совокупность некорректен. Иногда подобную деятельность называют «анализ данных». По сравнению с вероятностно-статистическими методами анализ данных имеет ограниченную познавательную ценность.

Итак, использование вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик – вот суть вероятностно-статистических методов принятия решений.

Подчеркнем, что логика использования выборочных характеристик для принятия решений на основе теоретических моделей предполагает одновременное использование двух параллельных рядов понятий, один из которых соответствует вероятностным моделям, а второй – выборочным данным. К сожалению, в ряде литературных источников, обычно устаревших либо написанных в рецептурном духе, не делается различия между выборочными и теоретическими характеристиками, что приводит читателей к недоумениям и ошибкам при практическом использовании статистических методов.

Предыдущая

Особенный интерес представляет количественная оценка предпринимательского риска при помощи методов математической статистики. Основными инструментами этого метода оценки являются:

§ вероятность появления случайной величины ,

§ математическое ожидание или среднее значение исследуемой случайной величины,

§ дисперсия ,

§ стандартное (среднеквадратическое) отклонение ,

§ коэффициент вариации ,

§ распределение вероятностей исследуемой случайной величины.

Для принятия решения нужно знать величину (степень) риска, которая измеряется двумя критериями:

1) среднее ожидаемое значение (математическое ожидание),

2) колебания (изменчивость) возможного результата.

Среднее ожидаемое значение это средневзвешенное значение случайной величины, которое связано с неопределенностью ситуации:

,

где значение случайной величины.

Среднее ожидаемое значение измеряет результат, который мы ожидаем в среднем.

Среднее значение является обобщенной качественной характеристикой и не позволяет принятия решения в пользу какого-нибудь отдельного значения случайной величины.

Для принятия решения необходимо измерить колебания показателей, то есть определить меру изменчивости возможного результата.

Колебание возможного результата представляет собой степень отклонения ожидаемого значения от средней величины.

Для этого на практике обычно используют два тесно связанных критерия: «дисперсия» и «среднеквадратическое отклонение».

Дисперсия – средневзвешенное из квадратов действительных результатов от среднего ожидаемого:

Среднеквадратическое отклонение – это квадратный кореньиз дисперсии. Оно является размерной величиной и измеряется в тех же единицах, в которых измеряется исследуемая случайная величина:

.

Дисперсия и среднеквадратическое отклонение служат мерой абсолютного колебания. Для анализа обычно используется коэффициент вариации.

Коэффициент вариации представляет собой отношение среднеквадратического отклонения к среднему ожидаемому значению , умноженное на 100%

или .

На коэффициент вариации не влияют абсолютные значения исследуемого показателя.

С помощью коэффициента вариации можно сравнивать даже колебания признаков, выраженных в разных единицах измерения. Коэффициент вариации может изменяться от 0 до 100%. Чем больше коэффициент, тем больше колебания.


В экономической статистике установлена такая оценка разных значений коэффициента вариации:

до 10% - слабое колебание, 10 – 25% - умеренное, свыше 25% - высокое.

Соответственно, чем выше колебания, тем больше риск.

Пример. Владелец небольшого магазина вначале каждого дня закупает для реализации некоторый скоропортящийся продукт. Единица этого продукта стоит 200 грн. Цена реализации – 300 грн. за единицу. Из наблюдений известно, что спрос на этот продукт на протяжении дня может быть 4, 5, 6 или 7 единиц с соответствующими вероятностями 0,1; 0,3; 0,5; 0,1. Если продукт на протяжении дня не будет реализован, то в конце дня его всегда купят по цене 150 грн. за единицу. Сколько единиц этого продукта должен закупить владелец магазина вначале дня?

Решение. Построим матрицу прибыли владельца магазина. Вычислим прибыль, которую получит владелец, если, например, он закупит 7 единиц продукта, а реализует на протяжении дня 6 и в конце дня одну единицу. Каждая единица продукта, реализованная на протяжении дня, дает прибыль в 100 грн., а в конце дня – потери 200 – 150 = 50 грн. Таким образом, прибыль в этом случае будет составлять:

Аналогично проводятся расчеты при других сочетаниях предложения и спроса.

Ожидаемая прибыль вычисляется как математическое ожидание возможных значений прибыли каждой строки построенной матрицы с учетом соответствующих вероятностей. Как видим, среди ожидаемых прибылей наибольшая равна 525 грн. Она соответствует закупке рассматриваемого продукта в количестве 6 единиц.

Для обоснования окончательной рекомендации о закупке необходимого количества единиц продукта вычислим дисперсию, среднеквадратическое отклонение и коэффициент вариации для каждого возможного сочетания предложения и спроса продукта (каждой строки матрицы прибыли):

400 0,1 40 16000
400 0,3 120 48000
400 0,5 200 80000
400 0,1 40 16000
1,0 400 160000
350 0,1 35 12250
500 0,3 150 75000
500 0,5 250 125000
500 0,1 50 25000
1,0 485 2372500
300 0,1 30 9000
450 0,3 135 60750
600 0,5 300 180000
600 0,1 60 36000
1,0 525 285750

Что касается закупки владельцем магазина 6 единиц продукта в сравнении с 5 и 4 единицами, то это неочевидно, поскольку риск при закупке 6 единиц продукта (19,2%) больше, чем при закупке 5 единиц (9,3%) и тем более, чем при закупке 4 единиц (0%).

Таким образом, имеем всю информацию об ожидаемых прибылях и рисках. И решать, сколько единиц продукта нужно закупить каждое утро владельцу магазина с учетом своего опыта, склонности к риску.

На наш взгляд, владельцу магазина следует рекомендовать каждое утро закупать 5 единиц продукта и его средняя ожидаемая прибыль будет равна 485 грн. и если сравнить это с закупкой 6 единиц продукта, при которой средняя ожидаемая прибыль составляет 525 грн., что на 40 грн. больше, но риск в этом случае будет большим в 2,06 раза.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

1. Распределение "хи-квадрат"

Заключение

Приложение

Введение

Как подходы, идеи и результаты теории вероятностей используются в нашей жизни? математический квадрат теория

Базой является вероятностная модель реального явления или процесса, т.е. математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются, прежде всего, для описания неопределенностей, которые необходимо учитывать при принятии решений. Имеются в виду, как нежелательные возможности (риски), так и привлекательные ("счастливый случай"). Иногда случайность вносится в ситуацию сознательно, например, при жеребьевке, случайном отборе единиц для контроля, проведении лотерей или опросов потребителей.

Теория вероятностей позволяет по одним вероятностям рассчитать другие, интересующие исследователя.

Вероятностная модель явления или процесса является фундаментом математической статистики. Используются два параллельных ряда понятий - относящиеся к теории (вероятностной модели) и относящиеся к практике (выборке результатов наблюдений). Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию (теоретический ряд) соответствует выборочное среднее арифметическое (практический ряд). Как правило, выборочные характеристики являются оценками теоретических. При этом величины, относящиеся к теоретическому ряду, "находятся в головах исследователей", относятся к миру идей (по древнегреческому философу Платону), недоступны для непосредственного измерения. Исследователи располагают лишь выборочными данными, с помощью которых они стараются установить интересующие их свойства теоретической вероятностной модели.

Зачем же нужна вероятностная модель? Дело в том, что только с ее помощью можно перенести свойства, установленные по результатам анализа конкретной выборки, на другие выборки, а также на всю так называемую генеральную совокупность. Термин "генеральная совокупность" используется, когда речь идет о большой, но конечной совокупности изучаемых единиц. Например, о совокупности всех жителей России или совокупности всех потребителей растворимого кофе в Москве. Цель маркетинговых или социологических опросов состоит в том, чтобы утверждения, полученные по выборке из сотен или тысяч человек, перенести на генеральные совокупности в несколько миллионов человек. При контроле качества в роли генеральной совокупности выступает партия продукции.

Чтобы перенести выводы с выборки на более обширную совокупность, необходимы те или иные предположения о связи выборочных характеристик с характеристиками этой более обширной совокупности. Эти предположения основаны на соответствующей вероятностной модели.

Конечно, можно обрабатывать выборочные данные, не используя ту или иную вероятностную модель. Например, можно рассчитывать выборочное среднее арифметическое, подсчитывать частоту выполнения тех или иных условий и т.п. Однако результаты расчетов будут относиться только к конкретной выборке, перенос полученных с их помощью выводов на какую-либо иную совокупность некорректен. Иногда подобную деятельность называют "анализ данных". По сравнению с вероятностно-статистическими методами анализ данных имеет ограниченную познавательную ценность.

Итак, использование вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик - вот суть вероятностно-статистических методов принятия решений.

1. Распределение "хи-квадрат"

С помощью нормального распределения определяются три распределения, которые в настоящее время часто используются при статистической обработке данных. Это распределения Пирсона ("хи - квадрат"), Стьюдента и Фишера.

Мы остановимся на распределении ("хи - квадрат"). Впервые это распределение было исследовано астрономом Ф.Хельмертом в 1876 году. В связи с гауссовской теорией ошибок он исследовал суммы квадратов n независимых стандартно нормально распределенных случайных величин. Позднее Карл Пирсон (Karl Pearson) дал имя данной функции распределения "хи - квадрат". И сейчас распределение носит его имя.

Благодаря тесной связи с нормальным распределением, ч2-распределение играет важную роль в теории вероятностей и математической статистике. ч2-распределение, и многие другие распределения, которые определяются посредством ч2-распределения (например - распределение Стьюдента), описывают выборочные распределения различных функций от нормально распределенных результатов наблюдений и используются для построения доверительных интервалов и статистических критериев.

Распределение Пирсона (хи - квадрат) - распределение случайной величиныгде X1, X2,…, Xn - нормальные независимые случайные величины, причем математическое ожидание каждой из них равно нулю, а среднее квадратическое отклонение - единице.

Сумма квадратов

распределена по закону ("хи - квадрат").

При этом число слагаемых, т.е. n, называется "числом степеней свободы" распределения хи - квадрат. C увеличением числа степеней свободы распределение медленно приближается к нормальному.

Плотность этого распределения

Итак, распределение ч2 зависит от одного параметра n - числа степеней свободы.

Функция распределения ч2 имеет вид:

если ч2?0. (2.7.)

На Рисунке 1 изображен график плотности вероятности и функции ч2 - распределения для разных степеней свободы.

Рисунок 1 Зависимость плотности вероятности ц (x) в распределении ч2 (хи - квадрат) при разном числе степеней свободы

Моменты распределения "хи-квадрат":

Распределение "хи-квадрат" используют при оценивании дисперсии (с помощью доверительного интервала), при проверке гипотез согласия, однородности, независимости, прежде всего для качественных (категоризованных) переменных, принимающих конечное число значений, и во многих других задачах статистического анализа данных.

2. "Хи-квадрат" в задачах статистического анализа данных

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Современный этап развития статистических методов можно отсчитывать с 1900 г., когда англичанин К. Пирсон основал журнал "Biometrika". Первая треть ХХ в. прошла под знаком параметрической статистики. Изучались методы, основанные на анализе данных из параметрических семейств распределений, описываемых кривыми семейства Пирсона. Наиболее популярным было нормальное распределение. Для проверки гипотез использовались критерии Пирсона, Стьюдента, Фишера. Были предложены метод максимального правдоподобия, дисперсионный анализ, сформулированы основные идеи планирования эксперимента.

Распределение "хи-квадрат" является одним из наиболее широко используемых в статистике для проверки статистических гипотез. На основе распределения "хи-квадрат" построен один из наиболее мощных критериев согласия - критерий "хи-квадрата" Пирсона.

Критерием согласия называют критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Критерий ч2 ("хи-квадрат") используется для проверки гипотезы различных распределений. В этом заключается его достоинство.

Расчетная формула критерия равна

где m и m" - соответственно эмпирические и теоретические частоты

рассматриваемого распределения;

n - число степеней свободы.

Для проверки нам необходимо сравнивать эмпирические (наблюдаемые) и теоретические (вычисленные в предположении нормального распределения) частоты.

При полном совпадении эмпирических частот с частотами, вычисленными или ожидаемыми S (Э - Т) = 0 и критерий ч2 тоже будет равен нулю. Если же S (Э - Т) не равно нулю это укажет на несоответствие вычисленных частот эмпирическим частотам ряда. В таких случаях необходимо оценить значимость критерия ч2, который теоретически может изменяться от нуля до бесконечности. Это производится путем сравнения фактически полученной величины ч2ф с его критическим значением (ч2st).Нулевая гипотеза, т. е. предположение, что расхождение между эмпирическими и теоретическими или ожидаемыми частотами носит случайный характер, опровергается, если ч2ф больше или равно ч2st для принятого уровня значимости (a) и числа степеней свободы (n).

Распределение вероятных значений случайной величины ч2 непрерывно и ассиметрично. Оно зависит от числа степеней свободы (n) и приближается к нормальному распределению по мере увеличения числа наблюдений. Поэтому применение критерия ч2 к оценке дискретных распределений сопряжено с некоторыми погрешностями, которые сказываются на его величине, особенно на малочисленных выборках. Для получения более точных оценок выборка, распределяемая в вариационный ряд, должна иметь не менее 50 вариантов. Правильное применение критерия ч2 требует также, чтобы частоты вариантов в крайних классах не были бы меньше 5; если их меньше 5, то они объединяются с частотами соседних классов, чтобы в сумме составляли величину большую или равную 5. Соответственно объединению частот уменьшается и число классов (N). Число степеней свободы устанавливается по вторичному числу классов с учетом числа ограничений свободы вариации.

Так как точность определения критерия ч2 в значительной степени зависит от точности расчета теоретических частот (Т), для получения разности между эмпирическими и вычисленными частотами следует использовать неокругленные теоретические частоты.

В качестве примера возьмем исследование, опубликованное на сайте, который посвящен применению статистических методов в гуманитарных науках.

Критерий "Хи-квадрат" позволяет сравнивать распределения частот вне зависимости от того, распределены они нормально или нет.

Под частотой понимается количество появлений какого-либо события. Обычно, с частотой появления события имеют дело, когда переменные измерены в шкале наименований и другой их характеристики, кроме частоты подобрать невозможно или проблематично. Другими словами, когда переменная имеет качественные характеристики. Так же многие исследователи склонны переводить баллы теста в уровни (высокий, средний, низкий) и строить таблицы распределений баллов, чтобы узнать количество человек по этим уровням. Чтобы доказать, что в одном из уровней (в одной из категорий) количество человек действительно больше (меньше) так же используется коэффициент Хи-квадрат.

Разберем самый простой пример.

Среди младших подростков был проведён тест для выявления самооценки. Баллы теста были переведены в три уровня: высокий, средний, низкий. Частоты распределились следующим образом:

Высокий (В) 27 чел.

Средний (С) 12 чел.

Низкий (Н) 11 чел.

Очевидно, что детей с высокой самооценкой большинство, однако это нужно доказать статистически. Для этого используем критерий Хи-квадрат.

Наша задача проверить, отличаются ли полученные эмпирические данные от теоретически равновероятных. Для этого необходимо найти теоретические частоты. В нашем случае, теоретические частоты - это равновероятные частоты, которые находятся путём сложения всех частот и деления на количество категорий.

В нашем случае:

(В + С + Н)/3 = (27+12+11)/3 = 16,6

Формула для расчета критерия хи-квадрат:

ч2 = ?(Э - Т)І / Т

Строим таблицу:

Эмпирич. (Э)

Теоретич. (Т)

(Э - Т)І / Т

Находим сумму последнего столбца:

Теперь нужно найти критическое значение критерия по таблице критических значений (Таблица 1 в приложении). Для этого нам понадобится число степеней свободы (n).

n = (R - 1) * (C - 1)

где R - количество строк в таблице, C - количество столбцов.

В нашем случае только один столбец (имеются в виду исходные эмпирические частоты) и три строки (категории), поэтому формула изменяется - исключаем столбцы.

n = (R - 1) = 3-1 = 2

Для вероятности ошибки p?0,05 и n = 2 критическое значение ч2 = 5,99.

Полученное эмпирическое значение больше критического - различия частот достоверны (ч2= 9,64; p?0,05).

Как видим, расчет критерия очень прост и не занимает много времени. Практическая ценность критерия хи-квадрат огромна. Этот метод оказывается наиболее ценным при анализе ответов на вопросы анкет.

Разберем более сложный пример.

К примеру, психолог хочет узнать, действительно ли то, что учителя более предвзято относятся к мальчикам, чем к девочкам. Т.е. более склонны хвалить девочек. Для этого психологом были проанализированы характеристики учеников, написанные учителями, на предмет частоты встречаемости трех слов: "активный", "старательный", "дисциплинированный", синонимы слов так же подсчитывались.

Данные о частоте встречаемости слов были занесены в таблицу:

Для обработки полученных данных используем критерий хи-квадрат.

Для этого построим таблицу распределения эмпирических частот, т.е. тех частот, которые мы наблюдаем:

Теоретически, мы ожидаем, что частоты распределятся равновероятно, т.е. частота распределится пропорционально между мальчиками и девочками. Построим таблицу теоретических частот. Для этого умножим сумму по строке на сумму по столбцу и разделим получившееся число на общую сумму (s).

Итоговая таблица для вычислений будет выглядеть так:

Эмпирич. (Э)

Теоретич. (Т)

(Э - Т)І / Т

Мальчики

"Активный"

"Старательный"

"Дисциплинированный"

"Активный"

"Старательный"

"Дисциплинированный"

Сумма: 4,21

ч2 = ?(Э - Т)І / Т

где R - количество строк в таблице.

В нашем случае хи-квадрат = 4,21; n = 2.

По таблице критических значений критерия находим: при n = 2 и уровне ошибки 0,05 критическое значение ч2 = 5,99.

Полученное значение меньше критического, а значит принимается нулевая гипотеза.

Вывод: учителя не придают значение полу ребенка при написании ему характеристики.

Заключение

Студенты почти всех специальностей изучают в конце курса высшей математики раздел "теория вероятностей и математическая статистика", реально они знакомятся лишь с некоторыми основными понятиями и результатами, которых явно не достаточно для практической работы. С некоторыми математическими методами исследования студенты встречаются в специальных курсах (например, таких, как "Прогнозирование и технико-экономическое планирование", "Технико-экономический анализ", "Контроль качества продукции", "Маркетинг", "Контроллинг", "Математические методы прогнозирования", "Статистика" и др. - в случае студентов экономических специальностей), однако изложение в большинстве случаев носит весьма сокращенный и рецептурный характер. В результате знаний у специалистов по прикладной статистике недостаточно.

Поэтому большое значение имеет курс "Прикладная статистика" в технических вузах, а в экономических вузах - курса "Эконометрика", поскольку эконометрика - это, как известно, статистический анализ конкретных экономических данных.

Теория вероятности и математическая статистика дают фундаментальные знания для прикладной статистики и эконометрики.

Они необходимы специалистам для практической работы.

Я рассмотрела непрерывную вероятностную модель и постаралась на примерах показать ее используемость.

И в конце своей работы я пришла к выводу, что грамотная реализация основных процедур математико-статического анализа данных, статическая проверка гипотез невозможна без знания модели "хи-квадрат", а также умения пользоваться ее таблицей.

Список используемой литературы

1. Орлов А.И. Прикладная статистика. М.: Издательство "Экзамен", 2004.

2. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1999. - 479с.

3. Айвозян С.А. Теория вероятностей и прикладная статистика, т.1. М.: Юнити, 2001. - 656с.

4. Хамитов Г.П., Ведерникова Т.И. Вероятности и статистика. Иркутск: БГУЭП, 2006 - 272с.

5. Ежова Л.Н. Эконометрика. Иркутск: БГУЭП, 2002. - 314с.

6. Мостеллер Ф. Пятьдесят занимательных вероятностных задач с решениями. М.: Наука, 1975. - 111с.

7. Мостеллер Ф. Вероятность. М.: Мир, 1969. - 428с.

8. Яглом А.М. Вероятность и информация. М.: Наука, 1973. - 511с.

9. Чистяков В.П. Курс теории вероятностей. М.: Наука, 1982. - 256с.

10. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: ЮНИТИ, 2000. - 543с.

11. Математическая энциклопедия, т.1. М.: Советская энциклопедия, 1976. - 655с.

12. http://psystat.at.ua/ - Статистика в психологии и педагогике. Статья Критерий Хи-квадрат.

Приложение

Критические точки распределения ч2

Таблица 1

Размещено на Allbest.ru

...

Подобные документы

    Вероятностная модель и аксиоматика А.Н. Колмогорова. Случайные величины и векторы, классическая предельная проблема теории вероятностей. Первичная обработка статистических данных. Точечные оценки числовых характеристик. Статистическая проверка гипотез.

    методичка , добавлен 02.03.2010

    Правила выполнения и оформления контрольных работ для заочного отделения. Задания и примеры решения задач по математической статистике и теории вероятности. Таблицы справочных данных распределений, плотность стандартного нормального распределения.

    методичка , добавлен 29.11.2009

    Основные методы формализованного описания и анализа случайных явлений, обработки и анализа результатов физических и численных экспериментов теории вероятности. Основные понятия и аксиомы теории вероятности. Базовые понятия математической статистики.

    курс лекций , добавлен 08.04.2011

    Определение закона распределения вероятностей результатов измерения в математической статистике. Проверка соответствия эмпирического распределения теоретическому. Определение доверительного интервала, в котором лежит значение измеряемой величины.

    курсовая работа , добавлен 11.02.2012

    Сходимость последовательностей случайных величин и вероятностных распределений. Метод характеристических функций. Проверка статистических гипотез и выполнение центральной предельной теоремы для заданных последовательностей независимых случайных величин.

    курсовая работа , добавлен 13.11.2012

    Основные этапы обработки данных натуральных наблюдений методом математической статистики. Оценка полученных результатов, их использование при принятии управленческих решений в области охраны природы и природопользования. Проверка статистических гипотез.

    практическая работа , добавлен 24.05.2013

    Сущность закона распределения и его практическое применение для решения статистических задач. Определение дисперсии случайной величины, математического ожидания и среднеквадратического отклонения. Особенности однофакторного дисперсионного анализа.

    контрольная работа , добавлен 07.12.2013

    Вероятность и ее общее определение. Теоремы сложения и умножения вероятностей. Дискретные случайные величины и их числовые характеристики. Закон больших чисел. Статистическое распределение выборки. Элементы корреляционного и регрессионного анализа.

    курс лекций , добавлен 13.06.2015

    Программа курса, основные понятия и формулы теории вероятностей, их обоснование и значение. Место и роль математической статистики в дисциплине. Примеры и разъяснения по решению самых распространенных задач по различным темам данных учебных дисциплин.

    методичка , добавлен 15.01.2010

    Теория вероятностей и математическая статистика являются науками о методах количественного анализа массовых случайных явлений. Множество значений случайной величины называется выборкой, а элементы множества – выборочными значениями случайной величины.