Пилотируемые перспективы. Проекты космических кораблей ближайшего будущего. Концептуальные космические корабли будущего (фото) Космические боевые корабли в будущем

В 2011 году США прекратили эксплуатацию комплекса Space Transportation System с многоразовым кораблем Space Shuttle, в результате чего единственным средством доставки космонавтов на Международную космическую станцию стали российские корабли семейства «Союз». В течение нескольких следующих лет такая ситуация будет сохраняться, а после ожидается появление новых кораблей, способных конкурировать с «Союзами». Новые разработки в области пилотируемой космонавтики создаются как в нашей стране, так и за рубежом.

Российская «Федерация»


За последние десятилетия российская космическая отрасль несколько раз предпринимала попытки создания перспективного пилотируемого корабля, пригодного для замены «Союзов». Однако эти проекты до сих пор не привели к ожидаемым результатам. Самой новой и многообещающей попыткой заменить «Союз» является проект «Федерация», предлагающий строительство многоразовой системы в пилотируемом и грузовом исполнении.

Макеты корабля "Федерация". Фото Wikimedia Commons

В 2009 году ракетно-космическая корпорация «Энергия» получила заказ на проектирование космического аппарата, обозначенного как «Перспективная пилотируемая транспортная система». Название «Федерация» появилось только через несколько лет. До недавнего времени РКК «Энергия» занималось разработкой требуемой документации. Строительство первого корабля нового типа началось в марте прошлого года. Вскоре готовый образец приступит к испытаниям на стендах и полигонах.

В соответствии с последними оглашенными планами, первый космический полет «Федерации» состоится в 2022 году, и корабль отправит на орбиту груз. На 2024-й запланирован первый полет с экипажем на борту. Уже после проведения требуемых проверок корабль сможет выполнить более смелые миссии. Так, во второй половине следующего десятилетия могут состояться беспилотный и пилотируемый облеты Луны.

Корабль, состоящий из многоразовой возвращаемой грузопассажирской кабины и одноразового агрегатно-двигательного отсека, сможет иметь массу до 17-19 т. В зависимости от поставленных целей и полезной нагрузки, он сможет брать на борт до шести космонавтов или 2 т груза. При возвращении в спускаемом аппарате может находиться до 500 кг груза. Известно о проработке нескольких версий корабля для решения разных задач. Имея соответствующую конфигурацию, «Федерация» сможет отправлять на МКС людей или грузы, либо работать на орбите самостоятельно. Также корабль предполагается использовать в будущих полетах к Луне.

Американская космическая отрасль, несколько лет назад оставшаяся без «Шаттлов», возлагает большие надежды на перспективный проект Orion, представляющий собой развитие идей закрытой программы Constellation. К разработке этого проекта привлечены несколько ведущих организаций, как американских, так и зарубежных. Так, за создание агрегатного отсека отвечает Европейское космическое агентство, а строить такие изделия будет компания Airbus. Американская наука и промышленность представлены агентством NASA и компанией Lockheed Martin.


Макет корабля Orion. Фото NASA

Проект «Орион» в его нынешнем виде был запущен в 2011 году. К этому времени НАСА успело выполнить часть работ по программе Constellation, но от нее пришлось отказаться. Определенные наработки перешли из этого проекта в новый. Уже 5 декабря 2014 года американским специалистам удалось провести первый испытательный запуск перспективного корабля в беспилотной конфигурации. Новые запуски пока не проводились. В соответствии с установленными планами, авторы проекта должны завершить необходимые работы, и только после этого можно будет начать новый этап испытаний.

Согласно актуальным планам, новый полет корабля Orion в конфигурации космического грузовика состоится только в 2019 году, после появления ракеты-носителя Space Launch System. Беспилотная версия корабля должна будет работать с МКС, а также выполнить облет Луны. С 2023 года на борту «Орионов» будут присутствовать астронавты. На вторую половину следующего десятилетия запланированы пилотируемые полеты большой продолжительности, в том числе с облетом Луны. В дальнейшем не исключается возможность использования системы Orion в марсианской программе.

Корабль с максимальной стартовой массой 25,85 т получит герметичный отсек объемом чуть менее 9 куб.м, что позволит ему перевозить достаточно крупные грузы или людей. На орбиту Земли можно будет доставлять до шести человек. «Лунный» экипаж будет ограничен четырьмя астронавтами. Грузовая модификация корабля будет поднимать до 2-2,5 т с возможностью безопасного возвращения меньшей массы.

CST-100 Starliner

В качестве альтернативы для корабля Orion может рассматриваться аппарат CST-100 Starliner, разрабатываемый компанией Boeing в рамках программы NASA Commercial Crew Transportation Capability. Проект предусматривает создание пилотируемого корабля, способного доставлять на орбиту и возвращать на землю несколько человек. За счет ряда особенностей конструкции, в том числе связанных с одноразовым применением техники, предполагается оснастить корабль сразу семью местами для астронавтов.


CST-100 на орбите, пока лишь в представлении художника. Рисунок NASA

«Старлайнер» создается с 2010 года компаниями Boeing и Bigelow Aerospace. Проектирование заняло несколько лет, и в середине текущего десятилетия предполагалось осуществить первый запуск нового корабля. Тем не менее, в связи с некоторыми затруднениями, испытательный старт несколько раз переносили. Согласно недавнему решению NASA, первый старт корабля CST-100 с грузом на борту должен состояться в августе текущего года. Кроме того, «Боинг» получил разрешение на выполнение пилотируемого полета в ноябре. По всей видимости, перспективный корабль в самое ближайшее время будет готов к испытаниям, и новые изменения графика уже не понадобятся.

От других проектов перспективных пилотируемых космических кораблей американской и зарубежной разработки «Старлайнер» отличается более скромными целями. По задумке создателей, этот корабль должен будет доставлять людей на МКС или на другие перспективные станции, разрабатываемые в настоящее время. Полеты за пределы земной орбиты не планируются. Все это снижает требования к кораблю и, как следствие, позволяет добиться заметной экономии. Меньшая стоимость проекта и сокращенные расходы на доставку астронавтов могут быть неплохим конкурентным преимуществом.

Характерной чертой корабля CST-100 являются достаточно большие размеры. Обитаемая капсула будет иметь диаметр чуть более 4,5 м, а полная длина корабля превысит 5 м. Полная масса – 13 т. Следует отметить, что крупные габариты будут использоваться для получения максимального внутреннего объема. Для размещения аппаратуры и людей разработан герметичный отсек объемом 11 куб.м. В нем можно будет установить семь кресел для астронавтов. В этом отношении корабль Starliner – если ему удастся дойти до эксплуатации – может стать одним из лидеров.

Dragon V2

Несколько дней назад агентство НАСА также определило сроки новых испытательных полетов космических кораблей от компании SpaceX. Так, на декабрь 2018 года назначен первый тестовый запуск пилотируемого корабля типа Dragon V2. Это изделие представляет собой переработанный вариант уже используемого «грузовика» Dragon, способный перевозить людей. Разработка проекта началась достаточно давно, но только сейчас он приближается к испытаниям.


Макет корабля Dragon V2 dj время презентации. Фото NASA

Проект Dragon V2 предусматривает использование переработанного грузового отсека, адаптированного для перевозки людей. В зависимости от требований заказчика, как утверждается, такой корабль сможет поднимать на орбиту до семи человек. Подобно своему предшественнику, новый «Дракон» будет многоразовым, и сможет совершать новые полеты после небольшого ремонта. Разработка проекта ведется в течение нескольких последних лет, но испытания еще не начались. Только в августе 2018 года SpaceX впервые запустит Dragon V2 в космос; этот полет пройдет без астронавтов на борту. Полноценный пилотируемый полет, в соответствии с указаниями NASA, запланирован на декабрь.

Компания SpaceX известна своими смелыми планами в отношении любых перспективных проектов, и пилотируемый космический корабль не является исключением. Сначала Dragon V2 предполагается использовать только для отправки людей на МКС. Также возможно использование такого корабля в самостоятельных орбитальных миссиях продолжительностью до нескольких суток. В отдаленном будущем планируется отправить корабль к Луне. Более того, с его помощью хотят организовать новый «маршрут» космического туризма: аппараты с пассажирами на коммерческой основе будут совершать облет Луны. Впрочем, это все пока является делом отдаленного будущего, а сам корабль еще даже не успел пройти все необходимые испытания.

При средних размерах корабль Dragon V2 имеет герметичный отсек объемом 10 куб.м и 14-кубовый отсек без герметизации. По данным компании-разработчика, он сможет доставлять на МКС чуть более 3,3 т груза и возвращать на Землю 2,5 т. В пилотируемой конфигурации в кабине предлагается устанавливать семь кресел-ложементов. Таким образом, новы «Дракон» сможет, как минимум, не уступать конкурентам по характеристикам грузоподъемности. Преимущества экономического характера предлагается получить за счет многоразового использования.

Космический корабль Индии

Вместе со странами-лидерами космической отрасли свои варианты пилотируемых космических кораблей пытаются создать и другие государства. Так, в ближайшем будущем может состояться первый полет перспективного индийского корабля с космонавтами на борту. Индийская организация космических исследований (ISRO) с 2006 года работает над собственным проектом корабля, и уже выполнила часть требуемых работ. По неким причинам, этот проект еще не получил полноценного обозначения и пока известен как «космический аппарат от ISRO».


Перспективный индийский корабль и его носитель. Рисунок Timesofindia.indiatimes.com

Согласно известным данным, новый проект ISRO предусматривает строительство сравнительно простого, компактного и легкого пилотируемого аппарата, похожего на первые корабли зарубежных стран. В частности, имеется определенное сходство с американской техникой семейства Mercury. Часть проектных работ была завершена еще несколько лет назад, и 18 декабря 2014 года состоялся первый запуск корабля с балластным грузом. Когда новый корабль доставит на орбиту первых космонавтов – неизвестно. Сроки этого события несколько раз смещались, и пока данные на этот счет отсутствуют.

Проект ISRO предлагает строительство капсулы массой не более 3,7 т с внутренним объемом в несколько кубических метров. С ее помощью планируется доставлять на орбиту трех космонавтов. Заявлена автономность на уровне недели. Первые миссии корабля будут связаны с нахождением на орбите, маневрированием и т.д. В дальнейшем индийские ученые планируют парные запуски со встречей и стыковкой кораблей. Впрочем, до этого пока еще далеко.

После освоения полетов на околоземную орбиту Индийская организация космических исследований предполагает создать несколько новых проектов. В планах создание многоразового корабля нового поколения, а также пилотируемые полеты к Луне, которые, вероятно, будут выполняться при сотрудничестве с зарубежными коллегами.

Проекты и перспективы

Перспективные пилотируемые космические корабли сейчас создаются в нескольких странах. При этом речь идет о разных предпосылках к появлению новых кораблей. Так, Индия намерена разработать первый собственный проект, Россия собирается заменить имеющиеся «Союзы», а Соединенные Штаты нуждаются в отечественных кораблях с возможностью перевозки людей. В последнем случае проблема проявляется так ярко, что NASA вынуждено разрабатывать или сопровождать сразу несколько проектов перспективной космической техники.

Несмотря на разные предпосылки к созданию, перспективные проекты почти всегда имеют схожие цели. Все космические державы собираются поставить в эксплуатацию новые собственные пилотируемые корабли, пригодные, как минимум, для орбитальных полетов. Одновременно с этим большая часть нынешних проектов создается с учетом достижения новых целей. После тех или иных доработок некоторые из новых кораблей должны будут выйти за пределы орбиты и отправиться, как минимум, к Луне.

Любопытно, что большая часть первых запусков новой техники запланирована на один и тот же период. С конца текущего десятилетия и до середины двадцатых годов сразу несколько стран намерены проверить на практике свои новейшие разработки. В случае получения желаемых результатов космическая отрасль заметно изменится к концу следующего десятилетия. Кроме того, благодаря предусмотрительности разработчиков новой техники, космонавтика получит возможность не только работать на орбите Земли, но и совершать полеты к Луне или даже готовиться к более смелым миссиям.

Перспективные проекты пилотируемых космических кораблей, создаваемых в разных странах, еще не успели дойти до стадии полноценных испытаний и полетов с экипажем на борту. Тем не менее, уже в этом году состоится несколько таких запусков, и в будущем такие полеты продолжатся. Развитие космической отрасли продолжается и дает желаемые результаты.

По материалам сайтов:
http://tass.ru/
http://ria.ru/
https://energia.ru/
http://space.com/
https://roscosmos.ru/
https://nasa.gov/
http://boeing.com/
http://spacex.com/
http://hindustantimes.com/


Звездные корабли и исследования космоса всегда были одной из основных тем научной фантастики. На протяжении многих лет писатели и режиссеры пытались фантазировать, на что способны космические корабли, и мечтали какими они смогут стать в будущем. В этом обзоре самые интересные и знаковые звездолеты, которые встречались в научной фантастике.

1. Serenity


сериал «Светлячок»
Корабль «Serenity» («Безмятежность») под руководством капитана Малькольма Рейнольдса можно было увидеть в сериале Firefly («Светлячок»). «Serenity»- это корабль класса Firefly, впервые приобретенный Рейнольдсом вскоре после галактической гражданской войны. Определяющей чертой корабля является отсутствие на нем оружия. Когда экипаж попадает в беду, он должен использовать всю свою изобретательность, чтобы выбраться из нее.

2. Derelict


франшиза «Чужой»
Названный «Derelict» (Заброшенный) и фигурирующий под кодовым названием Origin, инопланетный космический корабль был найден на LV-426 в фильме «Чужой». Он был впервые обнаружен корпорацией Weyland-Yutani, после чего его исследовала команда Nostromo. Никто не знает, как он попал на планету или кто его пилотировал. Единственные останки, которые могли быть потенциальным пилотом, были окаменелым существом. В этом зловещем корабле размещались яйца ксеноморфов.

3. Discovery 1


фильм «Космическая одиссея»
Фильм 2001 года - классика фантастических фильмов, а космический корабль «Discovery 1» в нем является почти таким же знаковым. Построенный для пилотируемой миссии на Юпитер, «Discovery 1» не был оснащен оружием, но у него была одна из самых передовых систем искусственного интеллекта, известных человеку (HAL 9000).

4. Battlestar Galactica


фильм «Звездный крейсер «Галактика»
«Battlestar Galactica» из одноименного фильма («Звездный крейсер «Галактика») имеет дизайн настоящего убийцы и легендарную историю. Он считался реликвией и должен был быть выведен из эксплуатации, но стал единственным защитником человечества после нападения Сайлона на Двенадцать колоний.

5. Bird of Prey


франшиза «Звездный путь»
«Bird of Prey» («Хищная птица») был военный корабль Империи Клингонов в «Звездном пути» («Star Trek»). В то время как его огневая мощь варьировалась от корабля к кораблю, обычно «Птицы» использовали фотонные торпеды. Они считались наиболее опасными из-за того, что были оснащены маскирующим устройством.

6. Normandy SR-2


видеоигра «Mass Effect 2»
«Normandy SR-2» имеет особенно крутой внешний дизайн. Будучи преемником SR-1, он был построен, чтобы помочь командиру Шепарду остановить похищения людей расой Коллекционеров. Корабль оснащен высокотехнологичным вооружением и средствами защиты и постоянно усовершенствуется на протяжении всей игры.

7. USS Enterprise


франшиза «Звездный путь»
Как же можно не включить в данный перечень «USS Enterprise» («Энтерпрайз») из «Звездного пути» («Star Trek»). Конечно, многим фанатам данной саги будет интересно, какую версию корабля стоит выбрать. Естественно же, это будет неповторимый NCC-1701 под капитанством самого Джеймса Кирка.

8. Imperial Star Destroyer


франшиза «Звездные войны»
«Imperial Star Destroyer» был частью огромного флота Империи, который поддерживал контроль и порядок во всей галактике. Обладая огромными размерами и большим количеством оружия, годами он символизировал господствующую власть Империи.

9. Tie Fighter


франшиза «Звездные войны»
«Tie Fighter» - один из самых крутых и уникальных кораблей в галактике. Хотя у него нет щитов, гиперпривода или даже систем жизнеобеспечения, его быстрый двигатель и маневренность делают его тяжелой целью для противника.

10. X-Wing


франшиза «Звездные войны»
Используемый некоторыми из лучших пилотов-истребителей в галактике, «Tie Fighter» является звездолетом, который выбрало в качестве вооружения повстанцы в «Звездных войнах». Именно он сыграл ключевую роль в битве при Явине и битве при Эндоре. Крылья этого истребителя, вооруженного четырьмя лазерными пушками и протонными торпедами, раскладывались в форму буквы «X» при атаке.

11. Milano


франшиза «Хранители Галактики»
В фильме «Хранители Галактики» «Милано» был звездным кораблем класса «M-Ship», который использовал Звездный лорд, чтобы найти таинственный шар и продать его, дабы избавиться от Йонды и его банды. Позднее он сыграл ключевую роль в битве при Ксандаре. Звездный лорд назвал корабль в подруги детства, Алиссы Милано.

12. USCSS Nostromo


франшиза «Звездные войны»
Космический буксир «USCSS Nostromo» («Ностромо»), которым руководил капитан Артур Даллас исследовал Derelict, что привело к возможному рождению одиночного ксеноморфа.

13. Millenium Falcon


франшиза «Звездные войны»
The «Millenium Falcon» («Тысячелетний ястреб») - это, без сомнения, лучший космический корабль во всей научной фантастике. Его супер крутой дизайн, изношенный внешний вид, невероятная скорость, а также тот факт, что он пилотируется Ханом Соло, отличает его от остальных. Лэндо Калриссиан, который проиграл Хану Соло корабль сказал: «Это самый быстрый кусок мусора в галактике».

14. Trimaxion Drone


фильм «Полет навигатора»
«Trimaxion Drone» - космический аппарат в фильме «Полет навигатора». Он пилотируется компьютером с искусственным интеллектом и выглядит как хромированная ракушка. Способности корабля довольно выдающиеся, он способен летать быстрее скорости света и путешествовать во времени.

15. Slave I


франшиза «Звездные войны»
«Slave I» («Раб 1») - патрульно-атакующий корабль типа «Огневержец-31», который использовал знаменитый Боба Фетт в «Звездных войнах». В фильме «Империя наносит ответный удар» Slave I привез замороженного в карбоните Хана Соло Джаббе Хатту. Наиболее характерной особенностью «Slave I» является его вертикальное положение во время полета и горизонтальное во время посадки.

БОНУС


В продолжение темы рассказ про . Сложно поверить, что это реальность.

Многие технологически развитые страны, в частности страны Евросоюза (в том числе Франция, ФРГ, Великобритания), а также Япония, Китай, Украина, Индия проводили и проводят исследования, направленные на создание собственных образцов космических систем многократного применения («Гермес», HOPE, «Зенгер-2», HOTOL, ASSTS, RLV, Skylon, «Шэньлун», «Сура» и т. д.).К сожалению экономические трудности зажигают красный свет перед этими проектами, часто после проведения значительных проектных работ.

Гермес - разрабатывавшийся Европейским космическим агентством проект космического корабля. Официально разработка началась в ноябре 1987, хотя проект был одобрен французским правительством еще в 1978. Проектом предполагалось, что первый корабль будет запущен в 1995, однако изменение политической ситуации и трудности с финансированием привели к закрытию проекта в 1993. Ни одного корабля так построено и не было.

Европейский космический корабль "гермес"

НОРЕ - космический челнок Японии . Проектировался с начала 80-х годов. Планировался как многоразовый четырехместный космический самолет-космоплан с вертикальным стартом на одноразовой ракете-носителе Н-2. Он считался основным вкладом Японии в МКС.


Японский космический корабль HOPE
Авиационно-космические фирмы Японии приступили в 1986 г. к реализации программы научно-исследовательских и опытно-конструкторских работ в области гиперзвуковой техники. Одно из основных направлений программы было создание беспилотного крылатого аэрокосмического летательного аппарата «Хоуп» (HOPE - в переводе «Надежда»), выводимого на орбиту с помощью ракеты-носителя «Эйч-2» (Н-2), которая должна была быть введена в эксплуатацию в 1996 г.
Основное назначение корабля - периодическое снабжение японской многоцелевой лаборатории «ДЖЕМ» (JEM) в составе американской космической станции (ныне - модуль МКС Кибо).
Головной разработчик - Национальное управление космических исследований (NASDA)Проектные изыскания по пилотируемому перспективному космическому летательному аппарату вела Национальная аэрокосмическая лаборатория (NAL) совместно с промышленными фирмами «Кавасаки», «Фудзи» и «Мицубиси». В качестве базового предварительно был принят вариант, предложенный лабораторией НАЛ (NAL).
К 2003 году был построен стартовый комплекс, полноразмерные макеты со всеми приборами, отобраны космонавты, испытаны в орбитальном полёте модели-прототипы корабля HIMES. Но в 2003 году космическая программа Японии была полностью пересмотрена, и проект закрыли.

X-30 National Aero-Space Plane (NASP) - проект перспективного многоразового космического корабля - одноступенчатой аэрокосмической системы-космолёта (АКС) нового поколения с горизонтальным стартом и посадкой, разрабатываемый США для создания надёжного и простого средства массового вывода людей и грузов в космос. Проект приостановлен и в настоящее время проводятся исследования гиперзвуковых беспилотных экспериментальных летательных аппаратов (Boeing X-43) для создания прямоточного гиперзвукового двигателя.
Разработка NASP началась в 1986 г. В своём обращении в 1986 г. президент США Рональд Рейган объявил:
…Восточный экспресс, который будет построен в следующем десятилетии, сможет взлететь из аэропорта Даллес и, разогнавшись до скорости в 25 раз выше скорости звука, выйти на орбиту или совершить полёт в Токио за 2 часа.
Программа NASP, финансируемая NASA и министерством обороны США, велась с участием фирм McDonnell Douglas, Rockwell International работавшими над созданием планера и оборудования гипрезвукового одноступенчатого космоплана. Фирмы Rocketdyne и Pratt & Whitney работали над созданием гиперзвуковых прямоточных двигателей.


Многоразовый космический корабль Х-30
По требованиям министерства обороны США X-30 должен был иметь экипаж из 2 человек и нести небольшую нагрузку. Пилотируемый космоплан с соответствующими системами управления и жизнеобеспечения оказался слишком большим, тяжёлым и дорогостоящим для опытного демонстратора технологий. В результате программа создания X-30 была остановлена, но исследования в области одноступенчатых средств вывода с горизонтальным стартом и гиперзвуковых прямоточных двигателей в США не прекратились. В настоящее время работы ведутся над небольшим беспилотным аппаратом Boeing X-43 «Hyper-X» для испытаний прямоточного двигателя.
X-33 - прототип многоразового одноступенчатого аэрокосмического корабля , строившийся по контракту NASA фирмой Lockheed Martin в рамках программы Venture Star . Работы по программе велись с 1995-2001 год. В рамках этой программы предполагалось разработать и испытать гиперзвуковую модель будущей одноступенчатой системы, а в дальнейшем - создать полноценную транспортную систему на основе данной технической концепции.


Многоразовый одноступенчатый космический корабль Х-33

Программа создания экспериментального аппарата X-33 была начата в июле 1996 г. Подрядчиком NASA стало опытно-конструкторское подразделение «Сканк Уоркс» корпорации «Локхид-Мартин».Она выиграла подряд на создание принципиально нового космического «шатла» получившего название «Венчур Стар». Впоследствии был испытан его усовершенствованный образец, получивший название «Х-33» и окруженный плотной завесой тайны. Известны лишь немногие характеристики аппарата. Взлетный вес −123 тонны, длина −20 метров, ширина - 21,5 метра. Два двигателя принципиально новой конструкции позволяют «Х-33» превысить скорость звука в 1,5 раза. Аппарат представляет собой нечто среднее между космическим кораблем и стратосферным самолетом. Разработки велись под флагом снижения затрат на выведение в космос полезного груза в десять раз, с нынешних 20 тыс. долл. за килограмм к двум с небольшим тысячам. Программа, однако, была закрыта в 2001, постройка экспериментального прототипа не была завершена.

Для "Венчур Стар" (Х-33) разрабатывался так называемый клиновоздушный ракетный двигатель.
Клиновоздушный ракетный двигатель (англ. Aerospike engine, Aerospike, КВРД) - тип ракетного двигателя с клиновидным соплом, который поддерживает аэродинамическую эффективность в широком диапазоне высот над поверхностью Земли с разным давлением атмосферы. КВРД относится к классу ракетных двигателей, сопла которых способны изменять давление истекающей газовой струи в зависимости от изменения атмосферного давления с увеличением высоты полета (англ. Altitude compensating nozzle). Двигатель с таким типом сопла использует на 25-30 % меньше топлива на низких высотах, где как правило требуется наибольшая тяга. Клиновоздушные двигатели изучались на протяжении длительного времени в качестве основного варианта для одноступенчатых космических систем (ОКС, англ. Single-Stage-To-Orbit, SSTO), то есть ракетных систем, использующих для доставки полезной нагрузки на орбиту только одну ступень. Двигатели этого типа были серьёзным претендентом на использование в качестве основных двигателей на МТКК «Спейс шаттл» при его создании (см.: SSME). Однако на 2012 год, ни одного двигателя этого типа не используется и не производится. Наиболее удачные варианты находятся в стадии доводочных работ.

Слева-обычный ракетный двигатель, справа- клиновоздушный ракетный двигатель.

Скайлон («Skylon») - название проекта английской компании Reaction Engines Limited , согласно которому в будущем может быть создан беспилотный космолёт многоразового использования, который, как предполагается его разработчиками, сделает возможным недорогой и надёжный доступ в космос. Предварительная экспертиза этого проекта признала, что технических и конструктивных ошибок в нем нет. По оценкам, Скайлон снизит стоимость выведения грузов в 15-50 раз. Сейчас компания занимается поиском финансирования.
Согласно проекту «Скайлон» будет способен доставить в космос приблизительно 12 тонн груза (для низкой экваториальной орбиты)
Скайлон будет способен подниматься в воздух как обычный самолет и, достигнув гиперзвуковой скорости в 5,5 М и высоты в 26 километров, переходить на питание кислородом из собственных баков, чтобы выйти на орбиту. Садиться он будет тоже как самолет. Таким образом, британский космолёт не только должен выходить в космос без применения разгонных ступеней, внешних ускорителей или сбрасываемых топливных баков, но и осуществлять весь этот полёт, используя одни и те же двигатели (в количестве двух штук) на всех этапах, начиная с рулёжки по аэродрому и заканчивая орбитальным участком.
Ключевой частью проекта является уникальная силовая установка - многорежимный реактивный двигатель (англ. hypersonic precooled hybrid air breathing rocket engine - гиперзвуковой комбинированный воздушно-реактивный/ракетный двигатель с предварительным охлаждением).
Несмотря на то, что проекту уже более 10 лет, до сих пор не создано ни одного полноразмерного действующего прототипа двигателя будущего аппарата и в настоящее время проект "существует" лишь в виде концепции, т.к. разработчики не смогли найти финансирование, необходимое для начала стадии разработки и строительства, в 1992 г. была определена сумма проекта - около 10 млрд. долларов. По заявлениям разработчиков, Скайлон окупит затраты на свое производство, обслуживание и использование, и в дальнейшем сможет приносить прибыль.


"Скайлон"- перспективный английский многоразовый космический корабль.
Многоцелевая авиационно-космическая система (МАКС) - проект использующего метод воздушного старта двухступенчатого комплекса космического назначения, который состоит из самолёта-носителя (Ан-225 «Мрия») и орбитального космического корабля-ракетоплана (космоплана), называемого орбитальным самолётом. Орбитальный ракетоплан может быть как пилотируемым, так и беспилотным. В первом случае он устанавливается вместе с одноразовым внешним топливным баком. Во втором - баки с компонентами топлива и окислителя размещаются внутри ракетоплана. Вариант системы допускает также установку вместо многоразового орбитального самолёта одноразовой грузовой ракетной ступени с криогенными компонентами топлива и окислителя.
Разработка проекта велась в НПО «Молния» с начала 1980-х годов под руководством Г. Е. Лозино-Лозинского. Широкой общественности проект был представлен в конце 1980-х гг. При полномасштабном разворачивании работ проект мог быть реализован до стадии начала лётных испытаний уже в 1988 г.

В рамках инициативных работ НПО «Молния» по проекту созданы меньшие и полномасштабные габаритно-весовой макет внешнего топливного бака, габаритно-весовой и технологический макеты космоплана. К настоящему времени на проект уже истрачено около 14 млн. долларов. Реализация проекта по-прежнему возможна при наличии инвесторов.
«Клипер» - многоцелевой пилотируемый многоразовый космический корабль , проектировавшийся в РКК «Энергия» с 2000 года на смену кораблям серии «Союз».

Макет Клипера на авиавыставке в Ле Бурже.
Во второй половине 1990-х был предложен новый корабль по схеме «несущий корпус» - промежуточный вариант между крылатым Шаттлом и баллистической капсулой «Союза». Была рассчитана аэродинамика корабля, а его модель испытана в аэродинамической трубе. В 2000-2002 годах шла дальнейшая проработка корабля, но тяжелая ситуация в отрасли не оставляла надежд на реализацию. Наконец, в 2003 году проект получил путёвку в жизнь.
В 2004 году началось продвижение «Клипера». В связи с недостаточностью бюджетного финансирования основной упор делался на сотрудничество с другими космическими агентствами. В том же году интерес к «Клиперу» проявило ЕКА, но потребовало коренной переработки концепции под свои нужды - корабль должен был садиться на аэродромы как самолёт. Менее чем через год в сотрудничестве с ОКБ «Сухого» и ЦАГИ была разработана крылатая версия «Клипера». К тому же времени в РКК был создан полномасштабный макет корабля, начались работы по компоновке оборудования.
В 2006 году по результатам конкурса проект был отправлен Роскосмосом формально на доработку, а затем остановлен в связи с прекращением конкурса. В начале 2009 года РКК «Энергия» победила в конкурсе на разработку более универсального корабля ППТС-ПТКНП («Русь»).
«Паром» - межорбитальный буксир многократного использования , проектируемый в РКК «Энергия» с 2000 года, и который, предполагается на смену одноразовым транспортным космическим кораблям типа «Прогресс».
«Паром» должен поднимать с низкой опорной орбиты, (200 км.) до орбиты МКС (350,3 км.) контейнеры - сравнительно простые, с минимумом оборудования, выводимые в космос при помощи «Союзов» или «Протонов» и несущие, соответственно, от 4 до 13 тонн грузов. «Паром» имеет два стыковочных узла: один для контейнера, второй - для причаливания к МКС. После вывода контейнера на орбиту паром за счёт своей двигательной установки спускается к нему, стыкуется с ним и поднимает его к МКС. А после разгрузки контейнера «Паром» спускает его на более низкую орбиту, где тот отстыкуется и самостоятельно тормозит (у него тоже есть небольшие двигатели), чтобы сгореть в атмосфере. Буксир же останется ждать новый контейнер, для последующей буксировки на МКС. И так много раз. От контейнеров же «Паром» дозаправляется, а, находясь на дежурстве в составе МКС, проходит, по мере надобности, профилактический ремонт. Вывести контейнер на орбиту можно будет практически любым отечественным или иностранным носителем.

Российская космическая корпорация «Энергия» планировала запустить в космос первый межорбитальный буксир типа «Паром» в 2009 году, однако, с 2006 года, официальных анонсов и публикаций, посвящённых развитию этого проекта, не было.

Заря - многоразовый многоцелевой космический корабль , разработанный РКК «Энергия» в 1986-1989 годах, производство которого так и не было начато в связи с сокращением финансирования космических программ.
Общая компоновка корабля похожа на корабли серии «Союз».
Основным отличием от существующих космических кораблей можно назвать вертикальный способ посадки с использованием реактивных двигателей, работающих на керосине в качестве топлива и перекиси водорода в качестве окислителя (такое сочетание выбрано в связи с малой токсичностью компонентов и продуктов горения). 24 посадочных двигателя размещались по окружности модуля, сопла направлены под углом к боковой стенке корабля.
На начальном участке спуска торможение планировалось осуществлять за счет аэродинамического торможения до скорости примерно 50-100 м/с, затем включались посадочные двигатели, остаток скорости планировалось гасить за счет деформируемых амортизаторов корабля и кресел экипажа.
Вывод на орбиту планировалось осуществлять с помощью модернизированной ракеты-носителя «Зенит».


Космический корабль Заря.
Диаметр корабля должен был составлять 4,1 м, длина 5 м. Стартовая масса корабля 15 т, масса доставляемого на орбиту груза 3 т или экипаж из 8 человек, масса возвращаемого на Землю груза 2,5 т. Длительность полёта совместно с орбитальной станцией 195-270 суток.

Я поделился с Вами информацией, которую "накопал" и систематизировал. При этом ничуть не обеднел и готов делится дальше, не реже двух раз в неделю. Если Вы обнаружили в статье ошибки или неточности - пожалуйста сообщите. Буду очень благодарен.

No related posts.

Комментарии

Отзывов (10) на Разработки перспективных космических кораблей остановленные на полдороге.”

    E-mail: [email protected]
    Колпаков Анатолий Петрович
    Путешествие на МАРС
    Содержание
    1. Аннотация
    2. Левитатор для космолёта
    3. СЭ – статический энергоид для энергетической установки
    4. Полёты на Марс
    5. Пребывание на Марсе

    Аннотация
    Реактивные космические корабли (РКК) малопригодны для длительного путешествия в глубокий Космос. Они нуждаются в большом количестве топлива, представляющего собой большую часть массы РКК. РКК имеют очень малый участок разгона с преодолением чрезмерной перегрузки и очень большой участок движения в невесомости. Они разгоняются всего лишь до 3-ей космических скоростей 14,3 км/с. Этого явно недостаточно. С такой скоростью до Марса можно долететь (150 млн. км), подобно брошенному камню, лишь за 120 суток. Кроме того РКК также должен иметь электростанцию для выработки электроэнергии необходимой для удовлетворения всех потребностей этого корабля. Этой электростанции тоже требуется топливо и окислитель, но другого типа. Впервые в мире я предлагаю два важных устройства: полилевитатор и СЭ – статический энергоид. Полилевитатор – безопорный движитель, а СЭ – энергетическая установка. Оба этих устройства используют новые ранее неизвестные принципы работы. Они не нуждаются в топливе, потому что используют Источник сил открытый мной. Источником сил является эфир Вселенной. Полилевитатор (левитатор – в дальнейшем) способен создавать свободную силу любой величины длительное время. Он предназначается для приведения в движение космолёта, а энергоид для приведения в действие генератора электрической энергии для нужд космолёта. Марсианский левитаторный космолёт (МЛК) способный долететь до Марса за 2,86 суток. При этом он совершает на всём пути только активный полёт. На первой половине пути он осуществляет разгон с ускорением равным + 9,8 м/с2, а на второй половине пути торможение с замедлением равным – 9,8 м/с2. Таким образом, путешествие на Марс оказывается коротким и комфортабельным (без перегрузок и невесомости) для экипажа МЛК. МЛК отличается большой вместимостью, поэтому оснащается всем необходимым. Для обеспечения электроэнергией он снабжается ЭЭС – энергоидной электростанцией, включающей энергоид и генератор электрической энергии. На Марс будут отправляться МЛК различного назначения: научные, грузовые и туристические. Научные будут оснащаться необходимыми приборами и оборудованием для изучения этой планеты. Они также будут доставлять туда учёных. Грузовые МЛК будет доставлять на Марс различные машины и механизмы, необходимые для создания строительных сооружений различного назначения, а также для добычи полезных для земной цивилизации ресурсов. Туристические МЛК будут доставлять туристов, и осуществлять полёты над Марсом, с целью ознакомления с достопримечательностями этой планеты. Кроме использования МЛК различного назначения предусматривается использование ДЛАА – двухместных левитаторных летательных аппаратов, которые будут использоваться для: картографирования поверхности Марса, монтажа строительных сооружений, взятия проб марсианского грунта, управления буровыми установками и другим. Они также будут использоваться для дистанционного управления марсианскими: автомобилями, скреперами, бульдозерами, экскаваторами при возведении строительных сооружений на Марсе и для многих других целей. Космос представляет большую опасность для людей, перемещающихся в нём на космолётах. Эта опасность в виде гамма и рентгеновских лучей исходит от Солнца. Вредоносное излучение также исходит и из Космоса. До определённой высоты над Землёй защиту обеспечивает магнитное поле Земли, но дальнейшее движение становится опасным. Однако, если воспользоваться магнитной тенью Земли, то можно будет избежать этой опасности. Марс имеет очень малую атмосферу и не имеет вовсе магнитного поля, которое могло бы надёжно защитить пребывающих туда людей от вредного воздействия гамма и рентгеновских лучей, исходящих от Солнца, а также вредного излучения Космоса. Для восстановления магнитного поля Марса я предлагаю сначала оснастить его атмосферой. Это можно будет сделать, превратив в газы, имеющиеся на нём твёрдые материалы. Для этого потребуется большое количество энергии, но это не представляет собой большой проблемы. Её могут вырабатывать ЭЭС, заранее изготовленные на заводах Земли, а затем доставленные на Марс грузовыми МЛК. При наличии атмосферы она должна быть такой, чтобы могла создавать и накапливать статическое электричество, которое достигнув определённого предела должно производить саморазряды в виде молний. Молнии же намагнитят ядро Марса, а оно создаст магнитное поле планеты, которое и защитит всё живое на ней от вредного излучения.

    Левитатор для космического туризма
    Для космического туризма почти всё имеется Не хватает только безопорного движителя. Именно такой простой дешёвый и абсолютно безопасный высокоэффективный безопорный движитель для космолёта я изобрёл и уже проверил принцип его действия опытным путём. Ему мной дано название левитатор. Левитатор впервые в мире способен создавать силу (тягу) любой величины без использования топлива. Для обеспечения движения левитатор использует ранее неизвестные принципы. Ему не требуется энергия.. Вместо источника энергии левитатор использует открытый мной вездесущий на Земле и в Космосе источник сил. Таким источником сил является малоизвестный науке эфир Вселенной. Мной сделано 60 прикладных научных открытий свойств эфира Вселенной пока не защищённых охранными документами. Всё что необходимо знать об эфире Вселенной теперь полностью известно, но пока только мне одному. Эфир вовсе не такой как его представляет наука. Космолёт, оснащённый левитатором, способен летать в Космосе с любой скоростью на любой высоте на любые расстояния без ощутимых перегрузок и невесомости. Кроме того он может зависать над любым космическим объектом: Землёй, Луной, Марсом, болидом, кометой как угодно долго и осуществлять посадки на их поверхности в подходящих местах. Левитаторный космолёт может сотни тысяч раз выходить в открытый Космос и возвращаться обратно без ощутимых перегрузок и невесомости. Он может осуществлять активный полёт как угодно долго, то есть двигаться в Космосе с постоянно действующей тягой. Он способен создавать космолёту ускорение, как правило, равное земному, т.е. 10 м/с2, при наличии людей на борту и достигать скоростей многократно превышающих скорость света. «Запреты» СТО — специальной теории относительности А. Эйнштейна на безопорное движение не распространяются. Первым космическим туристическим маршрутом, по-видимому, будет облёт Земли левитаторными космолётами с несколькими десятками туристов на борту в ближнем Космосе на высоте 50-100 км, где нет космического «мусора».
    Кратко: в чём сущность? Согласно классической механике в открытых механических системах результирующая сила от всех действующих сил оказывается не равной нулю. На создание этой силы, как ни парадоксально, не расходуется энергия какого-либо энергоносителя. Такую открытую механическую систему и представляет собой левитатор. Левитатор создаёт результирующую силу, которая и представляет собой тягу левитатора. В ней не действуют закон сохранения энергии. Таким образом, механика открытых механических систем оказывается бес затратной – даровой и это чрезвычайно важно. Левитатор представляет собой простое устройство – многозвенник. На его звенья действуют силы инициированные силой деформации тарельчатых пружин или винтовой парой. Их результирующей силой оказывается тяга. Левитатор может создавать тягу, какой угодно величины, например 250 кН.

    При этом посадка перспективных кораблей также должна производиться на территории России, в настоящее время космические корабли «Союз» совершают взлет с Байконура и производят посадку также на территории Казахстана.

    СЭ – статический энергоид для энергетической установки
    Мной сделано изобретение двигателя, которому я дал название — энергоид. Причём такой энергоид в котором звенья не совершают регулярного движения относительно друг друга, поэтому он назван статическим. А поскольку звенья не имеют относительного движения, то они и не имеют износов в кинематических парах. Иначе говоря, могут работать как угодно долго – вечно. Статический энергоид (СЭ) представляет собой всего-навсего многозвенник. Он, являясь устройством заключенным внутри ротора, представляет собой механический роторный двигатель. Итак, наконец-то изобретён Статический энергоид – механический роторный двигатель. На одном из его звеньев задаётся сила с помощью обладающих большой жёсткостью деформированных тарельчатых пружин или винтовой пары Важно обратить особое внимание на то, что деформация этих пружин сохраняется неизменной, то есть её мизерная энергия не расходуется на совершение работы СЭ. Силы распространяются по всем звеньям СЭ. Силы действуют на все звенья, их модули претерпевают преобразования от звена к звену и создают моменты с результирующим расчётным крутящим моментом. Статический энергоид (СЭ) — многофункциональное устройство. Он одновременно выполняет роли высокоэффективных: 1 – источника даровой механической энергии; 2 — механического двигателя; 3 – автоматической бесступенчатой передачи, с каким угодно большим диапазоном изменения передаточных отношений; 4 – без износного динамического тормоза (рекуператора энергии). СЭ может приводить в действие любые мобильные и любые стационарные машины. СЭ может быть спроектирован на любую мощность до 150 тысяч кВт. СЭ имеет обороты ВОМ – вала отбора мощности (ротора) до 10 тыс. в минуту, оптимальный коэффициент трансформации 4-5 (диапазон изменения передаточных отношений). СЭ имеет ресурс непрерывной работы равный бесконечности. Потому что детали СЭ не совершают относительного движения с большими или малыми линейными или угловыми скоростями и поэтому не изнашиваются в кинематических парах. Работа статического энергоида в отличие от всех существующих тепловых двигателей не сопровождается осуществлением какого-либо рабочего процесса (горения углеводородов, деления или синтеза радиоактивных веществ и т. д.). СЭ, с целью задания и управления мощностью, оснащается простейшим устройством – упором, создающим два равных по модулям, но противоположно направленным момента. При задании упора в его устройстве (открытой механической системе) возникает результирующий момент. Согласно теореме о движении центра инерции классической механики этот момент может иметь величину отличную от нуля. Он и представляет собой крутящий момент СЭ. СЭ кроме упора оснащается ещё простым по устройству АРЧ-КМ – автоматическим регулятором частоты и крутящего момента, который автоматически приводит в соответствие крутящий момент СЭ с моментом сопротивления нагрузки. В процессе работы СЭ не требует какого-либо обслуживания. Затраты на его эксплуатацию сведены к нулю. При использовании СЭ для привода мобильных или стационарных машин он заменяет собой: двигатель и автоматическую коробку передач. СЭ не требует топлива и поэтому не имеет вредных газов. Кроме того СЭ обладает наилучшей характеристикой совместной работы с любой мобильной или стационарной машиной. Вдобавок ко всему СЭ имеет простое устройство и принцип действия.
    Мной уже сделаны расчёты СЭ всего стандартного ряда мощностей: от 3,75 кВт до 150 тыс. кВт. Так, например, при мощности равной 3,75 кВт СЭ имеет диаметр равный 0,24 м и длину 0,12 м, а при максимальной мощности равной 150 тыс. кВт СЭ имеет диаметр 1,75 м и длина 0,85 м. Это означает, что СЭ имеет самые малые габариты среди всех ныне известных энергетических установок. Поэтому его удельная мощность представляют собой большую величину, достигающую 100 кВт на каждый килограмм собственной массы. СЭ является самой безопасной и самой высокоэффективной энергетической установкой. СЭ наибольшее применение, по-видимому, получит в энергетике. На его основе будут созданы ЭЭС – энергоидные электростанции, включающие в свой состав СЭ и любой генератор электрической энергии. ЭЭС будут в состоянии избавить человечество от страха неминуемой гибели от нарастающего дефицита энергии. СЭ позволит полностью и навсегда решить энергетическую проблему, в какой бы прогрессии не росла потребность в энергии не только РФ, но и всего человечества, и сопряжённую с ней экологическую проблему – избавления от вредных выбросов при получении энергии. Я также располагаю: «Основами теории СЭ» и «Теорией идеальной внешней скоростной характеристики СЭ», которые позволяют рассчитать оптимальные параметры, как СЭ на любую номинальную мощность, так и скоростную характеристику его совместной работы с любой агрегатированной с ним машиной. Принцип действия СЭ мной уже проверен опытным путём. Полученные результаты полностью подтверждают «Основы теории статического энергоида (СЭ)». Я имею Ноу-хау (пока ещё не запатентованные изобретения главным образом из-за отсутствия финансирования) на СЭ и ЭЭС. СЭ основываются на моём фундаментальном научном открытии нового ранее неизвестного источника энергии, каковым является малоизученный эфир Вселенной, и 60 также моих прикладных научных открытиях его физических свойств, которые в совокупности и определяют принцип действия статического энергоида, а, следовательно, ЭЭС. Строго говоря, эфир Вселенной не является источником энергии. Он – источник сил. Его силы приводят в движение всю материю Вселенной и таким образом наделяют её механической энергией. Поэтому этот источник только с оговоркой можно называть условным вездесущим на Земле и в Космосе источником даровой механической энергии. Однако поскольку в нём нет никакой энергии, то поэтому он и оказывается как бы неисчерпаемым источником энергии. Кстати, согласно моим открытиям вся материя Вселенной оказывается погруженной в этот эфир (академической науке это пока неизвестно). Поэтому именно эфир Вселенной и является вездесущим источником сил (условным источником энергии). Надо обратить особое внимание на то, что все усилия и изрядную долю финансирования государство направляет на поиски неисчерпаемого источника энергии. Однако теперь уже такой источник мной найден, быть может, к его большому удивлению. Таким источником, как уже сказано выше, оказался не источник энергии, а источник сил, – эфир Вселенной. Эфир Вселенной является единственным существующим в природе (во Вселенной) условным вездесущим источником даровой наиболее удобной для практического использования механической энергии. Все известные источники энергии являются всего лишь посредниками в получении энергии из эфира Вселенной, без которых можно обойтись. Поэтому государствам необходимо немедленно прекратить финансирование изысканий новых источников энергии, дабы избежать напрасной траты средств.
    Кратко: в чём сущность моих научных открытий? Основу механики всей известной техники представляют собой, так называемые замкнутые механические системы, в которых результирующий момент оказывается равным нулю. Чтобы сделать его отличным от нуля пришлось изощряться в создании специальных устройств (двигателей, турбин, реакторов) и при этом расходовать какой-либо энергоноситель. Только в таких случаях в замкнутых механических системах оказалось возможным получение результирующего (крутящего) момента отличного от нуля. Поэтому механика замкнутых механических систем оказывается затратной. Но это в свою очередь оказалось чреватым, как хорошо известно, большими затратами финансовых средств на получение энергии всеми существующими ныне способами. Принцип действия статического энергоида (СЭ) основан на другой механике – мало известной части классической механики, так называемых не замкнутых (открытых) механических систем. В специальных этих системах результирующий момент от всех действующих сил оказывается не равным нулю. Но на создание этого момента, как ни парадоксально, не расходуется энергия какого-либо энергоносителя. Такую открытую механическую систему и представляет собой СЭ. Это понять можно из следующего примера. СЭ создаёт результирующий момент, который и представляет собой крутящий момент. Поэтому СЭ по этой причине, в частности, оказывается вечным механическим роторным двигателем. Из этого становится понятным и то, что в открытых (не замкнутых) механических системах не соблюдаются закон сохранения энергии. Таким образом, механика открытых механических систем оказывается бес затратной – даровой и это чрезвычайно важно. Это объясняется, в первую очередь, тем, что в СЭ в виду его специфики действуют одни лишь силы обусловленные источником сил, а не источником энергии.
    СЭ представляет собой простое устройство. На его звенья действует, как указано выше, силы и моменты, инициированные силой деформации тарельчатых пружин или винтовой пары. Их результирующим моментом оказывается крутящий момент, а СЭ, в частности, превращается в роторный двигатель. Самым поразительным является то, что это простое устройство не могло быть изобретено сотнями тысяч изобретателей на протяжении почти трёх веков. Только потому, что изобретатели делали свои изобретения, как правило, без теоретического обоснования. Это продолжается и до сих пор. Примером тому служат многочисленные попытки изобрести так называемый «вечный двигатель». СЭ является вечным двигателем, но он имеет существенные отличия от пресловутого «вечного двигателя» и намного превосходит его. СЭ имеет простое устройство и принцип действия. Не имеет какого-либо рабочего процесса. Имеет ресурс непрерывной работы равный бесконечности. Не использует источник энергии, а использует источник сил. Одновременно является автоматической бесступенчатой передачей. Имеет чрезвычайно большую удельную мощность, достигающую 100 кВт на каждый килограмм собственной массы. И так далее, о чём уже подробно указано выше. Таким образом, СЭ во всех отношениях оказывается превосходящим все существующие энергетические установки: двигатели, турбины и атомные реакторы, т.е. СЭ по сути дела оказывается не двигателем, а идеальной энергетической установкой. Принцип действия СЭ мной уже проверен опытным путём. Получен положительный результат, который полностью находятся в соответствии с «Основами теории СЭ». В случае необходимости мной будут представлены доказательства путём демонстрации действующего образца ЭЭС – энергоидной электростанции, а, следовательно, и СЭ, которая будет разработана мной по техническим требованиям, согласованным с Космическим агентством. При заинтересованности Космического агентства в приобретении Ноу-хау СЭ и ЭЭС мной будет предоставлен Порядок продажи Ноу-хау. Кроме того Космическому агентству будут выданы: 1 – Ноу-хау СЭ; 2 – Основы теории СЭ; 3 – Теория идеальной внешней скоростной характеристики СЭ; 4 – действующий образец ЭЭС – энергоидной электростанции; 5 – чертежи на неё.

    Полёты на Марс
    Космос представляет большую опасность для людей, перемещающихся в нём на космолётах. Эта опасность в виде гамма и рентгеновских лучей исходит от Солнца. Вредоносное излучение также исходит и из Космоса. До определённой высоты над Землёй (до 24000 километров) защиту обеспечивает магнитное поле Земли, но дальнейшее движение становится опасным. Однако, если воспользоваться магнитной тенью Земли, то можно будет избежать этой опасности. Магнитная тень от Земли не всегда прикрывает Марс. Она появляется только при вполне определённом взаимном расположении этих планет в Космосе, но так как Марс и Земля всё время движутся по разным орбитам, то это бывает крайне редким случаем. Чтобы избежать этой зависимости необходимо воспользоваться другими средствами. Можно использовать «космическую пластмассу», цельнометаллическую оболочку космолёта, а также магнитную защиту в форме тороидального магнита и другие возможно удачно изобретённые с течением времени средства защиты.
    Марс имеет очень малую атмосферу и не имеет вовсе как будто бы магнитного поля, которое могло бы надёжно защитить пребывающих туда людей от вредного воздействия гамма и рентгеновских лучей, исходящих от Солнца, а также вредного излучения Космоса. Для восстановления магнитного поля Марса я предлагаю сначала оснастить его атмосферой. Это можно сделать, превратив в газы, имеющиеся на нём соответствующие твёрдые материалы. Для этого потребуется большое количество энергии, но это не представляет собой проблему. Её могут вырабатывать ЭЭС изготовленные на заводах Земли, а затем доставленные на Марс с помощью МЛК. При наличии атмосферы она эта атмосфера должна быть такой, чтобы могла создавать и накапливать статическое электричество, которое достигнув определённого предела должно производить саморазряды в виде молний. Этот процесс должен быть непрерывным. За длительный период молнии намагнитят ядро Марса, а оно создаст магнитное поле планеты, которое и защитит её от вредного излучения. На наличие ядра указывают доказательства существования когда-то на этой планете атмосферы и развитой цивилизации аналогичной земной.
    Для осуществления полёта на Марс и обратно необходимо иметь левитаторный космолёт с защитой от вредоносного излучения исходящего из Космоса. Выше уже было указано, что такой космолёт при полной его загрузке будет иметь массу 100 тонн. В состав полностью загруженного Марсианского левитаторного космолёта (МЛК) должны входить: 1 – левитаторный космолёт; 2 – основной и резервный полилевитаторы включающие по 60 левитаторов каждый из которых в отдельности способен создавать максимальную силу тяги равную 20 тонн; 3 – три ЭЭС – энергоидных электростанции (одна рабочая и две резервных) каждая из которых имеет номинальную мощность 100 кВт и номинальное трёхфазное напряжение 400 В, включающая СЭ и асинхронный трёхфазный генератор; 4 – три системы (одна рабочая и две резервные) обеспечения стандартной атмосферы: в отсеке управлением полётом МЛК, в отсеке отдыха, в отсеке проведения досуга, в отсеке кафе-ресторана, в отсеке управления всеми системами МЛК; 5 – хранилище продуктов питания с запасом из расчёта обеспечения питанием 12 человек в течении 3-4 месяцев; 6 – хранилище ёмкостей с питьевой водой на 25 кубических метров; 7 – хранилище для двух двухместных левитаторных летательных аппаратов (ДЛЛА); 8 – лабораторию определения физических свойств и химического состава марсианского грунта, минералов и всевозможных жидкостей, которые предположительно могут быть обнаружены на Марсе; 9 – две буровых установки; 10 – два телескопа для слежения за Марсом во время движения к нему или слежения за Землёй, при движении к ней. Все отсеки МЛК оснащаются радиооборудованием, видеоаппаратурой и компьютерами.
    Само собой разумеется, что управление полётом МЛК должно осуществляться автоматически специально предусмотренной программой – автопилотом, а роль пилотов должна заключаться лишь в чётком её выполнении. Пилоты должны брать на себя ручное управление полётом МЛК только в случае сбоев в программе автопилота, а также во время старта, полётов над планетами Марсом и Землёй и при посадках на их поверхности, т.е. точно также как осуществляется управление лайнерами в воздушном пространстве Земли. Экипаж МЛК включает: 2-х пилотов, одновременно управляющих его полётом и 10 специалистов. Среди специалистов должны быть два пилота-дублёра, а остальные – инженеры по обслуживанию всего оборудования, как МЛК, так и остального упомянутого выше оборудования. Кроме того каждый член экипажа должен иметь не менее 2-х специальностей. Это необходимо для того чтобы в совокупности все они могли решить любые проблемы связанные с получением ресурсов в случае обнаружения на Марсе минералов или чего-то иного и осуществить извлечение воды, кислорода, углекислого газа, других полезных жидкостей и газов, а также металлов, если они будут обнаружены на Марсе в связанном виде. Этим самим они смогут в какой-то мере хотя бы частично избавиться от зависимости земных ресурсов.
    При полётах на Марс в космическом пространстве возникает проблема определения скорости движения. Информация о ней очень важна. Без неё станет невозможным точный расчёт прибытия в конечный пункт маршрута. Те приборы, которые используются на самолётах, осуществляющих полёты в воздушном пространстве Земли, совершенно не пригодны для летательных аппаратов, совершающих движение в Космосе. Потому что в Космосе нет ничего такого, что могло бы определять эту скорость. Однако, учитывая то, что скорость, в конце концов, зависит от ускорения движения МЛК, поэтому эту зависимость и надо использовать для создания спидометра космолёта. Спидометр должен представлять собой интегральный прибор, который должен учитывать, как величины ускорений МЛК, так и их продолжительности на протяжении всего полёта космолёта и на их основе выдавать конечную скорость движения в любой момент времени.
    Полилевитатор способен создавать необходимую силу тяги МЛК, поэтому он будет совершать всё время активный полёт, то есть ускоренное или замедленное движение и таким образом избавлять весь персонал от пагубной невесомости и чрезмерных перегрузок. Первая половина пути в Космосе к Марсу будет ускоренным движением, а вторая половина пути будет замедленным движением. Теоретически это позволит прибыть на Марс с нулевой скоростью. Практически же приближение к его поверхности будет с какой-то вполне определённой, но малой скоростью. Но в любом случае это позволит осуществить благополучную посадку на его поверхность в подходящем месте.
    Зная расстояние до Марса и ускорение движения МЛК легко рассчитывается, как продолжительность движения по преодолению пути от Земли до Марса (или, наоборот, от Марса до Земли), так и максимальная скорость движения. В зависимости от взаимного расположения Земли и Марса в космическом пространстве расстояние между ними меняется. Если они окажутся по одну сторону от Солнца расстояние становится минимальным и равным 150 миллионам километров, а если по разные стороны, то расстояние становится наибольшим и равным 450 миллионам километров. Но это только частные случаи, которые случаются крайне редко. При каждом полёте к Марсу расстояние до него необходимо будет уточнять – запрашивать в соответствующих компетентных органах.
    При равноускоренном на первой половине пути и равнозамедленном движении на второй половине пути МЛК продолжительность путешествия до Марса оказывается различной. Расчёты при расстоянии до Марса равном 150 миллионов километров она оказывается равной всего 2,86 суток, а при расстоянии 450 миллионов километров она оказывается равной уже 4,96 суток. На первой половине пути МЛК осуществляет разгон с безопасным ускорением равным земному, а на второй половине пути – торможение с безопасным замедлением по величине равном земному ускорению при перелёте от Земли к Марсу или, наоборот, от Марса к Земле. Такие длительные по времени разгоны и торможения позволяют исключить чрезмерные перегрузки экипажу и совершить путешествие от Земли к Марсу или в обратном направлении в комфортабельных условиях.
    Таким образом, при минимальном расстоянии между Землёй и Марсом равном 150 миллионов километров МЛК преодолевает его за 2,86 земных суток. Разгоняясь на средине пути до скорости 4,36 миллионов километров в час (1212,44 км/с). При максимальном расстоянии между Землёй и Марсом равном 450 миллионов километров МЛК преодолевает его за 4,96 земных суток. Разгоняясь на средине пути до скорости 7,56 миллионов километров в час (2100 км/с). Следует обратить особое внимание на то, что такие грандиозные результаты невозможно получить с помощью современных реактивных космических кораблей. Показательным является то, что с помощью реактивных космических кораблей путешествие к Марсу предусматривается при минимальном расстоянии до него в течении 120 земных суток. При этом необходимо будет испытывать неудобную невесомость. С помощью же МЛК путешествие будет длиться всего 2,86 суток, то есть в 42 раза быстрее, но оно будет сопровождаться комфортабельными условиями равнозначными земным (без перегрузок и невесомости), так как при ускорении равном земному на МЛК, а, следовательно, и его экипаж будет действовать сила инерции равная силе притяжения Земли. Это значит, что каждый член экипажа будет испытывать действующую на него силу инерции равную силе веса на Земле.
    Следует иметь в виду, что в тот момент, когда МЛК покинет Землю и будет двигаться по направлению к Марсу, может показаться иллюзорным то, что Земля окажется как бы внизу, а Марс вверху. Такое впечатление схожее с тем как будто человек движется в лифте многоэтажного дома. Более того при этом будет неудобным смотреть на Марс задрав голову к верху. Поэтому необходимо будет предусмотреть систему зеркал расположенных под углом 450 в отсеках, из которых будет вестись наблюдение за Марсом. Все эти меры в равной степени окажутся пригодными и для наблюдения Земли на обратном пути – от Марса к Земле. Поэтому чтобы не ошибиться с выбором направления движения на него необходимо стартовать к Марсу только ночью когда он будет виден на небосводе. При этом надо использовать такое ночное время, когда он будет наблюдаться близко к зенитному расположению. Пилотская кабина должна быть расположена в передней части МЛК, а её основание (пол) должен иметь возможность поворота на 90 градусов. Это необходимо для того чтобы при полётах над поверхностями небесных тел он занимал горизонтальное положение, а при движениях в Космосе был перпендикулярным продольной оси МЛК, то есть был по отношению к этой оси повёрнутым на 90 градусов.

    Пребывание на Марсе
    Прилетевший к Марсу первый МЛК не сразу будет осуществлять посадку на его поверхность. Первоначально он сделает несколько разведывательных облётов Марса на высоте удобной для обозрения его поверхности, с целью выбора наиболее подходящего места для посадки. Для МЛК не требуются достижения первой марсианской космической скорости, чтобы оказаться на эллиптической орбите вокруг Марса. Потребности в такой орбите нет. МЛК может зависать на любой высоте или двигаться вокруг Марса на этой высоте сколько угодно раз. Всё определяется лишь установлением силы тяги полилевитатора, которая в данном случае оказывается подъёмной силой с вполне определённой составляющей силы горизонтального движения с любой скоростью. Эти силы легко задаются регулировкой полилевитатора. Определив, таким образом, подходящее место МЛК, наконец, осуществит посадку на поверхность Марса. С этого момента МЛК становится жилым домом и офисом для его персонала, который во время полёта МЛК был его экипажем.
    Для исследования и изучения рельефа Марса, а также для разведки полезных ресурсов предназначаются заранее созданные и полностью оснащённые всем необходимым еще на Земле ДЛЛА – двухместные левитаторные летательные аппараты. С помощью ДЛЛА можно будет создать в кратчайший срок, в частности, подробную физическую карту Марса. Что, по-видимому, будет первоочередной задачей для первого прибывшего коллектива. Для этого согласно графику регулярно будут вылетать 2 ДЛЛА, по выделенным маршрутам, и выполнять эту работу. В каждом ДЛЛА карта будет изображаться по заранее разработанной ещё на Земле программе. Для этого ДЛЛА будет иметь необходимую аппаратуру. ДЛЛА способен перемещаться с различными скоростями, в том числе и с большими скоростями, что позволят высокими темпами и в кратчайший срок изучить Марс. Экипажи ДЛЛА должны работать в скафандрах оснащёнными ёмкостями необходимого запаса воздуха (кислорода) для дыхания двух человек в течении не менее 4-5-ти часов. Из-за недостаточно комфортных условий продолжительность рабочего дня экипажа ДЛЛА, по всей вероятности, будет составлять ориентировочно 1-2 часа. Затем с учётом накопленного опыта рабочее время операторов будет уточнено.
    Поскольку Марс имеет незначительную атмосферу и не имеет как будто бы вовсе магнитного поля пребывать на нём также опасно, как и находится в открытом Космосе. Поэтому необходимо в первую очередь снабдить его атмосферой желательно аналогичной земной и реабилитировать магнитное поле. Однако для этого необходимо пребывать на этой планете большому количеству людей и техники. Для них. необходимо использовать, как индивидуальные средства защиты, так и коллективные средства защиты. В достаточной степени со стопроцентным результатом это невозможно, поэтому пребывание каждого человека на Марсе должно быть кратковременным. В первую очередь необходимо отбирать таких людей, которые оказываются полностью устойчивыми против радиации. Авария Чернобыльской АЭС обнаружила у некоторых людей такие способности. Однако с такими способностями людей очень мало и отсутствуют способы их тестирования. Для больших групп специалистов средствами защиты могут быть базы с электростатическими радиационными щитами, подземные укрытия. В качестве индивидуальных средств защиты могут быть использованы биоскафандры (Bio-Suit), тонкие алюминиевые плёнки, а также напыляемые на тело специальные прочные плёнки. Однако глаза, кисти рук и ступни ног должны иметь отдельную защиту. Перемещения по Марсу в большинстве случаев должно осуществляться с помощью ДЛЛА оснащённых тороидальными магнитами защищающих экипаж от вредных излучений. Находясь в тороидальном магните ДЛЛА, экипаж может дистанционно управлять различными машинами и механизмами работающими снаружи. Это полностью исключает выход экипажа из ДЛЛА и исключает попадание экипажа под облучение. Завершив работу, ДЛЛА возвращается в укрытие.
    Операторы МЛТ и ДЛЛА будут дистанционно управлять работой монтажа строительных сооружений, буровыми установками и другими машинами – марсианскими: автомобилями, скреперами, бульдозерами, экскаваторами. Эти машины будут доставляться на Марс грузовыми МЛТ по мере необходимости. МЛТ и ДЛЛА могут использоваться в качестве подъёмных кранов. Причём первые большой грузоподъёмности – до 100 тонн (при включении второго резервного полилевитатора), а вторые малой грузоподъёмности – до 5 тонн (при включении тоже резервного полилевитатора).
    Все работы на Марсе, по-видимому, будут организованы вахтовым методом. Это целесообразно будет с различных точек зрения. Во-первых, многие возникающие проблемы необходимо будет решать большим коллективом. Этот коллектив может включать несколько сот, а в дальнейшем и несколько тысяч человек. Поэтому потребуется привлечение дополнительного контингента недостающих специалистов. Во-вторых, потребуется дополнительно доставлять на Марс недостающее оборудование, в котором возникнет необходимость, которую с первого раза трудно предусмотреть. В-третьих, поработавшим на Марсе специалистам требуется отдых. В-четвёртых, часть каких-то работ будет выполняться большим количеством специалистов на Земле, поэтому эти работы должны быть скоординированы со специалистами, работающими на Марсе. В-пятых, потребуется доставка на Землю добытых на Марсе ресурсов. В-шестых, на Марс необходимо отправлять всё новые и новые МЛК с людьми для заселения освоенных территорий и с их помощью осваивать дополнительные территории. В-седьмых, вне всякого сомнения, что на Марсе будут обнаружены полезные для Земли ресурсы в первую очередь это будут редкие минералы, которые надо будет разрабатывать и для них надо будет доставлять на Марс необходимую технику. В связи с этим возникнет необходимость создания грузовых МЛК оснащённых грузоподъёмными устройствами, способных работать в марсианских условиях, которые подобно пассажирским МЛК могут пребывать на Марс в заданные районы и, загрузившись минералами или иными полезными для землян ресурсами, доставлять их на Землю.
    Марс представляет собой на всей поверхности по сути дела малоинтересную безжизненную пустыню, которая вскоре наскучит каждому пребывшему сюда человеку. Поэтому после ознакомления с его немногочисленными достопримечательностями все прибывших сюда люди должны иметь после рабочего дня достойный досуг и отдых в безопасных местах. Самыми безопасными местами особенно в первое время могут быть различного рода подземелья. В гористой местности под землёй должны постепенно создаваться целые города. С различными хорошо продуманными: развлекательными центрами, спортивными сооружениями, жилыми домами образующими целые улицы с магазинами, офисами, различными учреждениями, культурными заведениями и медицинскими учреждениями – медицинскими пунктами, клиниками, больницами и прочим. Так как это имеет место на Земле. Как и на Земле с кинотеатрами, библиотеками, клумбами, декоративными и фруктовыми карликовыми деревьями, фонтанами, аллеями, тротуарами, дорогами с двусторонним движением по которым будет двигаться левитаторный транспорт, представляющий собой нечто подобное земным автомобилям. Если на Марсе нет почвы, то её можно будет позаимствовать на Земле. Подземные города должны включать не только жилые, но и промышленные районы по образу и подобию земных. Должно быть предусмотрено достаточное пространство с тем, чтобы могли летать на небольшой высоте бескрылые одноместные и многоместные левитаторные летательные аппараты. Подземные города должны быть оснащены водопроводом, воздуховодом и канализацией. Давление воздуха должно быть близким к атмосферному, воздух по составу аналогичен земному. Многочисленные входы в подземелье городов должны иметь специальные шлюзы, исключающие утечку воздуха из этих городов при входах и выходах наружу людей облачённых в защитные скафандры. Должна быть создана необходимая городская инфраструктура с тем, чтобы марсиане могли работать на поверхности, а досужее время и отдых проводить под землёй. То есть большую часть времени жить под землёй без скафандров. По-видимому, если на Марсе есть или была цивилизация, то она будет вскоре обнаружена или же будут обнаружены её следы. По-видимому, этих следов будет больше всего под землёй. Имеется в виду на некоторой глубине планеты Марс. Надо полагать что на один из входов в подземный город, если, разумеется, он там есть, указывает «Марсианский Сфинкс».
    МЛК обладает широкими возможностями. Кроме перелётов на любые расстояния, роли жилища и офиса он может использоваться в качестве космической станции, находясь на любой как большой, так и малой высоте от поверхности планеты в режиме зависания. В частности, также может использоваться, как сказано выше, в качестве подъёмного крана, при возведении высотных сооружений любой высоты, как на Марсе, так и на любой другой планете, например на Земле, или её естественном спутнике, например на Луне. Причём надо заметить, что при этом не требуется, чтобы планета имела воздух или иной газ, Потому что полилевитатор МЛК не нуждается в наличии какой-либо опоры. Кстати, для гарантировано устойчивой радиосвязи с Землёй, осуществления телевидения и передачи большого объёма информации потребуется в числе первых соорудить на Марсе ажурную облегчённую металлическую (стальную) антенну высотой в несколько сот, а может и тысяч метров. Это окажется вполне возможным с помощью МЛК. Причём такая антенна может быть изготовлена на машиностроительном заводе Земли и в виде сборных секций. Затем доставлена грузовыми МЛК на Марс и там смонтирована. В нижнюю часть этой антенны затем может быть вставлен блок, включающий секции помещений с различным оборудованием аналогичным земным. Разница будет лишь в том, что в состав дополнительного оборудования будут входить: ЭЭС необходимой мощности; система, создающая стандартную атмосферу; модернизированная система кондиционирования воздуха; холодильник запасов пищи. Там же склад пищевых продуктов, требующий принятия специальных мер по их длительной сохранности. А также склады по хранению специального оборудования и возможно что-то другое, которое выяснится впоследствии.
    На Марс будут пребывать всё новые и новые МЛК, увеличивающие население этой планеты людьми. В основном они будут заниматься добычей редких на Земле минералов, металлов и возможно чего-то ещё. Кроме того получит широкое развитие марсианский туризм потому что многие земляне мечтают побывать на этой планете. Тем более что такое путешествие на МЛК будет дешевле путешествия на реактивных космических кораблях на несколько порядков (ориентировочно на 3-4 порядка). На Марсе обнаружены две скульптуры, созданные предположительно разумными существами. Одна скульптура обнаружена давно, так называемый «Марсианский Свинкс», а вторая недавно тоже скульптура головы человекоподобного существа. На Марсе имеются горы и долины, а на полюсах снежные шапки, засыпанные пылью. Всё это будут представлять интерес для туристов. С течением времени, по всей видимости, появятся новые достопримечательности на Марсе интересные для туристов. Само собой разумеется, что они будут располагаться на больших расстояниях между собой. Однако это не будет представлять проблемы для их посещения туристами. Туристические МЛК способны перемещаться очень быстро. Поэтому перелёты на большие расстояния будет занимать мало времени.
    Следует обратить особое внимание на то, что в виду многочисленного применения различного рода МЛК: пассажирских, грузовых и туристических полёты на Марс и обратно будут очень частыми особенно тогда когда эта планета будет оснащена атмосферой, магнитным полем и подземными городами. То есть тогда когда она будет надёжно защищена от солнечной радиации и вредного излучения из Космоса. По-видимому, не менее чем один вылет космолёта в неделю. А по мере продолжающегося с каждым годом заселения этой планеты полёты на Марс будут ещё чаще.

Практически каждый любитель научно-фантастических фильмов знает, что такое «Звезда смерти». Это такая большая серая и круглая космическая станция из киноэпопеи «Звездные войны», внешне очень напоминающая Луну. Это межгалактический уничтожитель планет, который по сути сам является искусственной планетой, состоящей из стали и населенной штурмовиками.

Можем ли мы в реальности построить такую искусственную планету и бороздить на ней просторы галактики? В теории — да. Только на это потребуется невероятное количество человеческих и финансовых ресурсов.

«Станция размером со «Звезду смерти» потребует колоссального запаса материалов для строительства», — говорит Ду.

Вопрос строительства «Звезды смерти» — без шуток — поднимался даже американским Белым домом, после того как общество отправило соответствующую петицию для рассмотрения. Официальный ответ властей гласил, что только на сталь для строительства потребуется 852 000 000 000 000 000 долларов.

Давайте предположим, что вопрос денег не является проблемой и «Звезду смерти» действительно построили. Что дальше? А дальше в дело включится старая добрая физика. И это окажется действительно проблемой.

«Для возможности движения «Звезды смерти» через космос потребуется беспрецедентный объем энергии», — продолжает Ду.

«Масса станции будет эквивалентна массе Деймоса, одного из спутников Марса. У человечества просто нет возможностей и необходимых технологий, чтобы построить двигатель, способный передвигать таких великанов».

Орбитальная станция «Дальний космос 9»

Итак, мы выяснили, что «Звезда смерти» слишком большая (по крайней мере на сегодняшний взгляд) для путешествий в космосе. Возможно, нам поможет какая-нибудь космическая станция меньшего размера, такая как, например, «Дальний космос 9», на которой происходят события сериала «Звездный путь» (1993-1999 гг.). В этом сериале станция находится на орбите вымышленной планеты Бэйджор и является отличным местом обитания и настоящим галактическим торговым центром.

«Опять же, потребуется очень много ресурсов для строительства подобной станции», — говорит Ду.

«Основной вопрос заключается в следующем: производить ли доставку необходимого материала к той планете, на орбите которой будет находиться будущая станция, или же добывать необходимые ресурсы прямо на месте, скажем, на каком-нибудь астероиде или спутнике одной из местных планет?»

Ду говорит, что доставка каждого килограмма полезного груза в космос на низкую орбиту Земли обходится сейчас примерно в 20 000 долларов. Учитывая это, вероятнее всего, было бы целесообразнее отправить какой-нибудь роботизированный космический аппарат на добычу полезных ископаемых на один из местных астероидов, чем доставлять на место нужный материал с Земли.

Еще одним вопросом, который потребует обязательного решения, будет, конечно же, вопрос жизнеобеспечения. В том же «Звездном пути» станция «Дальний космос 9» не была полностью автономной. Она являлась торговым галактическим центром, новые запасы для которого доставлялись различными торговцами, а также в ходе поставок с планеты Бэйджор. По мнению Ду, при строительстве подобных космических станций для обитания в любом случае потребуется время от времени проводить миссии по поставке новых продовольствий.

«Станция подобного размера, скорее всего, будет функционировать благодаря созданию и комбинации использования биологических сред (например, выращивания водорослей для питания) и систем жизнеобеспечения, основанных на химико-технологических процессах, как, например, на МКС», — объясняет Ду.

«Эти системы не будут полностью автономными. Они будут требовать периодического обслуживания, пополнения запасов воды, кислорода, поставок новых запчастей и так далее».

Марсианская станция как в фильме «Миссия на Марс»

В этом фильме присутствует очень много реального фантастического бреда. Торнадо на Марсе? Мистические обелиски пришельцев? Но больше всего смущает описанный в фильме факт того, что на Марсе очень просто обустроить себе жилище и обеспечить себя запасами воды и кислорода. Оставшийся в одиночку на Марсе герой актера Дона Чидла объясняет, что смог выжить на Красной планете благодаря созданию небольшого огорода.

«Это работает. Я даю им свет и углекислый газ, они мне — кислород и пищу».

Если это так легко, то что мы до сих пор делаем здесь, на Земле?

«В теории создать марсианскую теплицу действительно возможно. Однако выращивание растений обладает рядом особенностей. И если сравнивать трудозатраты на выращивание растений на Марсе и стоимость доставки на Красную планету уже готовых продуктов с Земли, то проще и дешевле будет доставлять готовые и запакованные продукты, дополняя запасы лишь частью выращенных сельскохозяйственных культур, имеющих очень высокую степень урожайности. Более того, выбирать нужно будет растения с минимальным циклом созревания. Например, различные салатные культуры».

Несмотря на уверенность Чидла в том, что между растениями и человеком имеются тесные связи (на Земле оно, может, так и есть), в суровых климатических условиях Марса растения и человек будут находиться в совсем неестественной для них окружающей среде. Не следует также забывать и о таком аспекте, как различия в интенсивности фотосинтеза сельскохозяйственных культур. Для выращивания растений потребуются сложные закрытые системы для контроля за окружающей средой. И это весьма серьезная задача, так как в таком случае людям и растениям придется делить единую атмосферу. Решение этой проблемы на практике потребует использования изолированных парниковых камер для роста, но это в свою очередь повысит общую стоимость затрат.

Выращивание растений, может, и является хорошей идеей, но лучше запастись дополнительной провизией, которую можно будет взять с собой перед полетом в один конец.

Клауд-Сити. Город, парящий в атмосфере планеты

Знаменитый «город в облаках» Лэндо Калриссиана из «Звездных войн» представляется довольно интересной идеей для научной фантастики. Однако могут ли планеты с весьма плотной атмосферой, но суровой поверхностью являться подходящей площадкой для выживания и даже процветания человечества? Эксперты из NASA считают, что это действительно возможно. И самым подходящим кандидатом на роль такой планеты в нашей Солнечной системе является Венера.

Научно-исследовательский центр в Лэнгли в свое время изучал эту идею и до сих пор работает над концептами космических аппаратов, которые смогли бы отправить человека к верхним слоям атмосферы Венеры. Мы уже писали о том, что строительство гигантской станции размером с город будет очень сложной задачей, практически невозможной, но еще сложнее может быть поиск ответа на вопрос о том, как удержать космический корабль в верхних слоях атмосферы.

«Вход в атмосферу является одним из сложнейших испытаний в ходе космического полета», — говорит Ду.

«Вы даже не представляете, какие «7 минут ужаса» пришлось перенести «Кьюриосити» в момент посадки на Марс. А удержать гигантскую жилую станцию в верхних слоях атмосферы будет гораздо сложнее. Когда вы входите в атмосферу на скорости нескольких тысяч километров в секунду, вам потребуется за считанные минуты активировать системы торможения и стабилизации аппарата в атмосфере. В противном случае вы просто разобьетесь».

Опять же, одним из преимуществ летающего города Калриссиана является постоянный доступ к чистому и свежему воздуху, о чем можно полностью забыть, если мы говорим о реальных условиях и в частности условиях Венеры. Кроме того, придется разработать специальные скафандры, облачаясь в которые люди смогут спускаться вниз и пополнять запасы материалов на адской поверхности этой планеты. Ду имеет на этот счет несколько идей:

«Для обитания в атмосфере, в зависимости от выбранного места, можно, например, проводить очистку атмосферы вокруг станции (на Венере вы можете перерабатывать CO2 в O2, например), или же можно отправить роботов-шахтеров на поверхность с помощью троса, например, для добычи полезных ископаемых и последующей доставки их обратно на станцию. В условиях Венеры это опять же будет чрезвычайно сложной задачей».

В общем, идея Клауд-Сити выглядит совсем не подходящей со многих сторон.

Гигантский космический корабль «Аксиома» из мультика «ВАЛЛ-И»

Потрясающий и трогательный научно-фантастический мультфильм «ВАЛЛ-И» предлагает относительно реалистичный вариант исхода человечества с Земли. В то время как роботы пытаются очистить поверхность Земли от скопившегося на ней мусора, люди улетают из системы в дальний космос на гигантском космическом корабле. Звучит вполне реалистично, правда? Космические корабли мы уже делать научились, так давайте просто сделаем их больше?

На самом же деле эта идея является, по мнению Ду, чуть ли не самой нереальной из предложенного в этой статье списка.

«В мультфильме показано, что корабль «Аксиома» находится в очень дальнем космосе. Поэтому, вероятнее всего, доступа к любым внешним ресурсам, которые могут потребоваться для поддержания на корабле жизни, он, скорее всего, не имеет. Например, так как корабль будет находиться далеко от нашего Солнца или любого другого источника солнечной энергии, то, скорее всего, работать он будет на базе ядерного реактора. Население корабля составляет несколько тысяч человек. Всем им нужно есть, пить, дышать воздухом. Все эти ресурсы нужно откуда-то брать, а также еще и не забывать о переработке отходов, которые обязательно будут накапливаться с употреблением этих ресурсов».

«Даже если использовать какую-нибудь сверхвысокотехнологическую систему биологического жизнеобеспечения, то нахождение в космической среде, не способной обеспечить пополнение космического корабля нужными объемами энергии, будет означать, что все эти системы жизнеобеспечения не смогут поддерживать биологические процессы на его борту. Короче говоря — вариант с гигантским космическим кораблем выглядит наиболее фантастическим».

Мир-кольцо. Элизиум

Миры-кольца, какими они представлены, например, в фантастическом боевике «Элизиум» или видеоигре «Halo», являются, пожалуй, одними из самых интересных идей для космических станций будущего. В «Элизиуме» станция находится близко к Земле и, если игнорировать ее размеры, обладает определенной долей реалистичности. Однако самая большая проблема здесь заключается в ее «открытости», что уже только по виду — чистая фантастика.

«Возможно, самым спорным вопросом по поводу станции «Элизиум» является ее открытость для космической среды», — объясняет Ду.

«В фильме показано, как космический корабль просто садится на лужайку после того, как прилетает из открытого космоса. Здесь нет никаких стыковочных шлюзов и тому подобного. А ведь такая станция должна быть полностью изолирована от внешней среды. В противном случае атмосфера здесь долго не задержится. Возможно, открытые участки станции можно будет защитить каким-то невидимым полем, которое позволит солнечному свету проникать внутрь и поддерживать жизнь в высаженных здесь растениях и деревьях. Но пока это всего лишь фантастика. Таких технологий нет».

Самая идея станции в форме колец замечательная, но пока нереализуемая.

Подземные города как в «Матрице»

События трилогии «Матрица» в действительности происходят на Земле. Однако поверхность планеты заселена роботами-убийцами, и поэтому наш дом выглядит как чужой и очень негостеприимный мир. Для выживания людям пришлось спуститься под землю, ближе к ядру планеты, где все еще тепло и более безопасно. Основная же проблема при таких реальных стечениях обстоятельств, помимо, конечно же, сложности при транспортировке оборудования, которое потребуется для создания подземной колонии, будет заключаться в поддержании контакта с остальным человечеством. Ду объясняет эту сложность на примере Марса:

«Подземные колонии могут встретиться с проблемами общения между собой. Связь между подземными колониями на Марсе и Земле потребует создания отдельных мощных коммуникационных линий и орбитальных спутников, которые станут мостом для передачи сообщений между двумя планетами. Если потребуется наличие постоянной коммуникационной линии, то в этом случае будет необходимо использование как минимум еще одного дополнительного спутника, который будет располагаться на орбите Солнца. Он будет принимать сигнал и отправлять его на Землю, когда наша планета и Марс будут находиться по разные стороны звезды».

Терраформированный астероид как в романе «2312»

В романе Кима Стэнли Робинсона люди провели терраформирование астероида и построили на нем своего рода террариум, в котором искусственная гравитация создается за счет центростремительной силы.

Эксперт NASA Эл Глобус говорит, что важнее всего будет решить вопрос герметичности астероида, учитывая, что большинство из них представляются по сути большими кусками различного космического «мусора». Кроме того, эксперт говорит, что астероиды очень плохо поддаются вращению, а изменение центра его гравитации потребует определенных усилий при корректировке его курса.

«Однако строительство космической станции на астероиде действительно возможно. Нужно будет лишь найти большой и наиболее подходящий летающий кусок скалы», — говорит Ду.

«Что интересно, NASA планирует нечто подобное в рамках своей миссии Asteroid Redirect Mission».

«Одна из задач заключается в отборе наиболее подходящего астероида, обладающего нужной структурой, формой и орбитой. Были концепты, согласно которым рассматривался вопрос помещения астероида на периодические орбиты между Землей и Марсом. Поведение астероидов в данном случае изменялось таким образом, что они действовали бы как транспортники между двумя планетами. Дополнительная масса вокруг астероида в свою очередь обеспечивала защиту от воздействия космической радиации».

«Главная же задача, связанная с данным концептом, заключалась бы в передвижении потенциально достаточно подходящего для обитания астероида на определенную орбиту (это потребовало бы наличия технологий, которыми мы в настоящий момент не обладаем), а также добыче и переработке полезных ископаемых на этом астероиде. Опыта в этом у нас пока тоже нет».

«Размеры и плотность подобного объекта больше подходят для отправки туда команды из 4-6 человек, нежели строительства чего-то уровня колонии. И подготовкой к этому NASA сейчас и занимается».

Солнечная система уже давно не представляет особого интереса для фантастов. Но, что удивительно, и у некоторых ученых наши «родные» планеты не вызывают особого вдохновения, хотя они еще практически не исследованы.

Едва прорубив окно в космос, человечество рвется в неведомые дали, причем уже не только в мечтах, как раньше.
Еще Сергей Королев обещал в скором времени полеты в космос «по профсоюзной путевке», но этой фразе уже полвека, а космическая одиссея по-прежнему удел избранных - слишком дорогое удовольствие. Однако же два года назад HACA запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технического фундамента для космических полетов.


Эта беспрецедентная программа должна привлечь ученых, инженеров и энтузиастов со всего мира. Если все увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться, как на трамваях.

Так какие же проблемы нужно решить, чтобы звездные полеты стали реальностью?

ВРЕМЯ И СКОРОСТЬ ОТНОСИТЕЛЬНЫ

Звездоплавание автоматических аппаратов кажется некоторым ученым почти решенной задачей, как это ни странно. И это при том, что совершенно нет никакого смысла запускать автоматы к звездам с нынешними черепашьими скоростями (примерно 17 км/с) и прочим примитивным (для таких неведомых дорог) оснащением.

Сейчас за пределы Солнечной системы ушли американские космические аппараты «Пионер-10» и «Вояджер-1», связи с ними уже нет. «Пионер-10» движется в сторону звезды Альдебаран. Если с ним ничего не случится, он достигнет окрестностей этой звезды... через 2 миллиона лет. Точно так же ползут по просторам Вселенной и другие аппараты.

Итак, независимо от того, обитаем корабль или нет, для полета к звездам ему нужна высокая скорость, близкая к скорости света. Впрочем, это поможет решить проблему полета только к самым близким звездам.

«Даже если бы мы умудрились построить звездный корабль, который сможет летать со скоростью, близкой к скорости света, - писал К. Феоктистов, - время путешествий только по нашей Галактике будет исчисляться тысячелетиями и десятками тысячелетий, так как диаметр ее составляет около 100 000 световых лет. Но на Земле-то за это время пройдет намного больше».

Согласно теории относительности, ход времени в двух движущихся одна относительно другой системах различен. Так как на больших расстояниях корабль успеет развить скорость очень близкую к скорости света, разница во времени на Земле и на корабле будет особенно велика.

Предполагается, что первой целью межзвездных полетов станет альфа Центавра (система из трех звезд) - наиболее близкая к нам. Со скоростью света туда можно долететь за 4,5 года, на Земле за это время пройдет лет десять. Но чем больше расстояние, тем сильней разница во времени.

Помните знаменитую «Туманность Андромеды» Ивана Ефремова? Там полет измеряется годами, причем земными. Красивая сказка, ничего не скажешь. Однако эта вожделенная туманность (точнее, галактика Андромеды) находится от нас на расстоянии 2,5 миллиона световых лет.



По некоторым расчетам, путешествие займет у космонавтов более 60 лет (по звездолетным часам), но на Земле-то пройдет целая эра. Как встретят космических «неадертальцев» их далекие потомки? Да и будет ли жива Земля вообще? То есть возвращение в принципе бессмысленно. Впрочем, как и сам полет: надо помнить, что мы видим галактику туманность Андромеды такой, какой она была 2,5 млн лет назад - столько идет до нас ее свет. Какой смысл лететь к неизвестной цели, которой, может, уже давно и не существует, во всяком случае, в прежнем виде и на старом месте?

Значит, даже полеты со скоростью света обоснованны только до относительно близких звезд. Однако аппараты, летящие со скоростью света, живут пока лишь в теории, которая напоминает фантастику, правда, научную.

КОРАБЛЬ РАЗМЕРОМ С ПЛАНЕТУ

Естественно, в первую очередь ученым пришла мысль использовать в двигателе корабля наиболее эффективную термоядерную реакцию - как уже частично освоенную (в военных целях). Однако для путешествия в оба конца со скоростью, близкой к световой, даже при идеальной конструкции системы, требуется отношение начальной массы к конечной не менее чем 10 в тридцатой степени. То есть звездолет будет походить на огромный состав с топливом величиной с маленькую планету. Запустить такую махину в космос с Земли невозможно. Да и собрать на орбите - тоже, недаром ученые не обсуждают этот вариант.

Весьма популярна идея фотонного двигателя, использующего принцип аннигиляции материи.

Аннигиляция - это превращение частицы и античастицы при их столкновении в какие-либо иные частицы, отличные от исходных. Наиболее изучена аннигиляция электрона и позитрона, порождающая фотоны, энергия которых и будет двигать звездолет. Расчеты американских физиков Ронана Кина и Вей-мин Чжана показывают, что на основе современных технологий возможно создание аннигиляционного двигателя, способного разогнать космический корабль до 70% от скорости света.

Однако дальше начинаются сплошные проблемы. К сожалению, применить антивещество в качестве ракетного топлива очень непросто. Во время аннигиляции происходят вспышки мощнейшего гамма-излучения, губительного для космонавтов. Кроме того, контакт позитронного топлива с кораблем чреват фатальным взрывом. Наконец, пока еще нет технологий для получения достаточного количества антивещества и его длительного хранения: например, атом антиводорода «живет» сейчас менее 20 минут, а производство миллиграмма позитронов обходится в 25 миллионов долларов.

Но, предположим, со временем эти проблемы удастся разрешить. Однако топлива все равно понадобится очень-очень много, и стартовая масса фотонного звездолета будет сравнима с массой Луны (по оценке Константина Феоктистова).

ПОРВАЛИ ПАРУС!

Наиболее популярным и реалистичным звездолетом на сегодняшний день считается солнечный парусник, идея которого принадлежит советскому ученому Фридриху Цандеру.

Солнечный (световой, фотонный) парус - это приспособление, использующее давление солнечного света или лазера на зеркальную поверхность для приведения в движение космического аппарата.
В 1985 году американским физиком Робертом Форвардом была предложена конструкция межзвездного зонда, разгоняемого энергией микроволнового излучения. Проектом предусматривалось, что зонд достигнет ближайших звезд за 21 год.

На XXXVI Международном астрономическом конгрессе был предложен проект лазерного звездолета, движение которого обеспечивается энергией лазеров оптического диапазона, расположенных на орбите вокруг Меркурия. По расчетам, путь звездолета этой конструкции до звезды эпсилон Эридана (10,8 световых лет) и обратно занял бы 51 год.

«Маловероятно, что по данным, полученным в путешествиях по нашей Солнечной системе, мы сможем существенно продвинуться вперед в понимании мира, в котором мы живем. Естественно, мысль обращается к звездам. Ведь раньше подразумевалось, что полеты около Земли, полеты к другим планетам нашей Солнечной системы не являются конечной целью. Проложить дорогу к звездам представлялось главной задачей».

Эти слова принадлежат не фантасту, а конструктору космических кораблей и космонавту Константину Феоктистову. По мнению ученого, ничего особо нового в Солнечной системе уже не обнаружится. И это при том, что человек пока долетел только до Луны...


Однако за пределами Солнечной системы давление солнечного света приблизится к нулю. Поэтому существует проект разгона солнечного парусника лазерными установками с какого-нибудь астероида.

Все это пока теория, однако первые шаги уже делаются.

В 1993 году на российском корабле «Прогресс М-15» в рамках роекта «Знамя-2» был впервые развернут солнечный парус 20-метровой ширины. При стыковке «Прогресса» со станцией «Мир» ее экипаж установил на борту «Прогресса» агрегат развертывания отражателя. В итоге отражатель создал яркое пятно 5 км в ширину, которое прошло через Европу в Россию со скоростью 8 км/с. Пятно света имело светимость, примерно эквивалентную полной Луне.



Итак, преимущество солнечного парусника - отсутствие топлива на борту, недостатки - уязвимость конструкции паруса: по сути, это тонкая фольга, натянутая на каркас. Где гарантия, что по дороге парус не получит пробоин от космических частиц?

Парусный вариант может подойти для запуска автоматических зондов, станций и грузовых кораблей, но непригоден для пилотируемых полетов с возвратом. Существуют и другие проекты звездолетов, однако они, так или иначе, напоминают вышеперечисленные (с такими же масштабными проблемами).

СЮРПРИЗЫ В МЕЖЗВЕЗДНОМ ПРОСТРАНСТВЕ

Думается, путешественников во Вселенной поджидает множество сюрпризов. К примеру, едва высунувшись за пределы Солнечной системы, американский аппарат «Пионер-10» начал испытывать силу неизвестного происхождения, вызывающую слабое торможение. Высказывалось много предположений, вплоть до о неизвестных пока эффектах инерции или даже времени. Однозначного объяснения этому феномену до сих пор нет, рассматриваются самые различные гипотезы: от простых технических (например, реактивная сила от утечки газа в аппарате) до введения новых физических законов.

Другой аппарат, «Вояд-жер-1», зафиксировал на границе Солнечной системы область с сильным магнитным полем. В нем давление заряженных частиц со стороны межзвездного пространства заставляет поле, создаваемое Солнцем, уплотняться. Также аппарат зарегистрировал:

  • рост количества высокоэнергетических электронов (примерно в 100 раз), которые проникают в Солнечную систему из межзвездного пространства;
  • резкий рост уровня галактических космических лучей - высокоэнергетических заряженных частиц межзвездного происхождения.
И это только капля в море! Впрочем, и того, что сегодня известно о межзвездном океане, достаточно, чтобы поставить под сомнение саму возможность бороздить просторы Вселенной.

Пространство между звездами не пустое. Везде есть остатки газа, пыли, частицы. При попытке движения со скоростью, близкой к скорости света, каждый столкнувшийся с кораблем атом будет подобен частице космических лучей большой энергии. Уровень жесткой радиации при такой бомбардировке недопустимо повысится даже при полетах к ближайшим звездам.

А механическое воздействие частиц при таких скоростях уподобится разрывным пулям. По некоторым расчетам, каждый сантиметр защитного экрана звездолета будет непрерывно обстреливаться с частотой 12 выстрелов в минуту. Ясно, что никакой экран не выдержит такого воздействия на протяжении нескольких лет полета. Или должен будет иметь неприемлемую толщину (десятки и сотни метров) и массу (сотни тысяч тонн).



Собственно, тогда звездолет будет состоять в основном из этого экрана и топлива, которого потребуется несколько миллионов тонн. В силу этих обстоятельств полеты на таких скоростях невозможны, тем паче, что по дороге можно нарваться не только на пыль, но и на что-то покрупнее, или попасть в ловушку неизвестного гравитационного поля. И тогда гибель опять-таки неминуема. Таким образом, если и удастся разогнать звездолет до субсветовой скорости, то до конечной цели он не долетит - слишком много препятствий встретится ему на пути. Поэтому межзвездные перелеты могут осуществляться лишь с существенно меньшими скоростями. Но тогда фактор времени делает эти полеты бессмысленными.

Получается, что решить проблему транспортировки материальных тел на галактические расстояния со скоростями, близкими к скорости света, нельзя. Бессмысленно ломиться через пространство и время с помощью механической конструкции.

КРОТОВАЯ НОРА

Фантасты, стараясь побороть неумолимое время, сочинили, как «прогрызать дырки» в пространстве (и времени) и «сворачивать» его. Придумали разнообразные гиперпространственные скачки от одной точки пространства до другой, минуя промежуточные области. Теперь к фантастам присоединились ученые.

Физики принялись искать экстремальные состояния материи и экзотические лазейки во Вселенной, где можно передвигаться со сверхсветовой скоростью вопреки теории относительности Эйнштейна.



Так появилась идея кротовой норы. Эта нора осуществляет смычку двух частей Вселенной подобно прорубленному тоннелю, соединяющему два города, разделенные высокой горой. К сожалению, кротовые норы возможны только в абсолютном вакууме. В нашей Вселенной эти норки крайне неустойчивы: они попросту могут сколлапсировать до того, как туда попадет космический корабль.

Однако для создания стабильных кротовых нор можно использовать эффект, открытый голландцем Хендриком Казимиром. Он заключается во взаимном притяжении проводящих незаряженных тел под действием квантовых колебаний в вакууме. Оказывается, вакуум не совсем пуст, в нем происходят колебания гравитационного поля, в котором спонтанно возникают и исчезают частицы и микроскопические кротовые норы.

Остается только обнаружить одну из нор и растянуть ее, поместив между двумя сверхпроводящими шарами. Одно устье кротовой норы останется на Земле, другое космический корабль с околосветовой скоростью переместит к звезде - конечному объекту. То есть звездолет будет как бы пробивать тоннель. По достижении звездолетом пункта назначения кротовая нора откроется для реальных молниеносных межзвездных путешествий, продолжительность которых будет исчисляться минутами.

ПУЗЫРЬ ИСКРИВЛЕНИЯ

Сродни теории кротовых нор пузырь искривления. В 1994 году мексиканский физик Мигель Алькубьерре выполнил расчеты согласно уравнениям Эйнштейна и нашел теоретическую возможность волновой деформации пространственного континуума. При этом пространство будет сжиматься перед космическим кораблем и одновременно расширяться позади него. Звездолет как бы помещается в пузырь искривления, способный передвигаться с неограниченной скоростью. Гениальность идеи состоит в том, что космический корабль покоится в пузыре искривления, и законы теории относительности не нарушаются. Движется при этом сам пузырь искривления, локально искажающий пространство-время.

Несмотря на невозможность перемещаться быстрее света, ничто не препятствует перемещению пространства или распространению деформации пространства-времени быстрее света, что, как полагают, и происходило сразу после Большого взрыва при образовании Вселенной.

Все эти идей пока не укладываются в рамки современной науки, однако в 2012 году представители НАСА заявили о подготовке экспериментальной проверки теории доктора Алькубьерре. Как знать, может, и теория относительности Эйнштейна когда-нибудь станет частью новой глобальной теории. Ведь процесс познания бесконечен. А значит, однажды мы сможем прорваться чрез тернии к звездам.

Ирина ГРОМОВА