Центробежный момент инерции характеризует удаленность. Осевой момент инерции. Осевые моменты инерции некоторых тел

ОПРЕДЕЛЕНИЕ

Осевым (или экваториальным) моментом инерции сечения относительно оси называется величина, которую определяют как:

Выражение (1) обозначает, для вычисления осевого момента инерции берется по всей площади S сумма произведений бесконечно малых площадок () умноженных на квадраты расстояний от них до оси вращения:

Сумма осевых моментов инерции сечения относительно взаимно перпендикулярных осей (например, относительно осей X и Y в декартовой системе координат) дают полярный момент инерции () относительно точки пересечения этих осей:

ОПРЕДЕЛЕНИЕ

Полярным моментом инерции называют момент инерции сечением по отношению к некоторой точке.

Осевые моменты инерции всегда больше нуля, так как в их определениях (1) под знаком интеграла стоят величина площади элементарной площадки (), всегда положительная и квадрат расстояния от этой площадки до оси.

Если мы имеем дело с сечением сложной формы, то часто при расчетах используют то, что осевой момент инерции сложного сечения по отношению к оси равен сумме осевых моментов инерции частей этого сечения относительно той же оси. Однако следует помнить, что нельзя суммировать моменты инерции, которые найдены относительно разных осей и точек.

Осевой момент инерции относительно оси проходящей через центр тяжести сечения имеет наименьшее значение из всех моментов относительно параллельных с ней осей. Момент инерции относительно любой оси () при условии ее параллельности с осью, проходящей через центр тяжести равен:

где - момент инерции сечения относительно оси проходящей через центр тяжести сечения; - площадь сечения; - расстояние между осями.

Примеры решения задач

ПРИМЕР 1

Задание Чему равен осевой момент инерции равнобедренного треугольного сечения относительно оси Z, проходящей через центр тяжести () треугольника, параллельно его основанию? Высота треугольника равна .

Решение Выделим на треугольном сечении прямоугольную элементарную площадку (см. рис.1). Она находится на расстоянии от оси вращения, длина одной ее стороны , другая сторона . Из рис.1 следует, что:

Площадь выделенного прямоугольника с учетом (1.1) равна:

Для нахождения осевого момента инерции используем его определение в виде:

Ответ

ПРИМЕР 2

Задание Найдите осевые моменты инерции относительно перпендикулярных осей X и Y (рис.2) сечения в виде круга диаметр которого равен d.

Решение Для решения задачи удобнее начать с нахождения полярного момента относительно центра сечения (). Все сечение разобьем на бесконечно тонкие кольца толщиной , радиус которых обозначим . Тогда элементарную площадь найдем как:

Осевой момент инерции равен сумме произведений элементарных площадок на квадрат расстояния до соответствующей оси.

(8)

Знак всегда «+».

Не бывает равным 0.

Свойство: Принимает минимальное значение, когда точка пересечения координатных осей совпадает с центром тяжести сечения.

Осевой момент инерции сечения применяют при расчетах на прочность, жесткость и устойчивость.

1.3. Полярный момент инерции сечения Jρ

(9)

Взаимосвязь полярного и осевого моментов инерции:

(10)

(11)

Полярный момент инерции сечения равен сумме осевых моментов.

Свойство:

при повороте осей в любую сторону, один из осевых моментов инерции возрастает, а другой убывает (и наоборот). Сумма осевых моментов инерции остается величиной постоянной.

1.4. Центробежный момент инерции сечения Jxy

Центробежный момент инерции сечения равен сумме произведений элементарных площадок на расстояния до обеих осей

(12)

Единица измерения [см 4 ], [мм 4 ].

Знак «+» или «-».

, если координатные оси являются осями симметрии (пример – двутавр, прямоугольник, круг), или одна из координатных осей совпадает с осью симметрии (пример – швеллер).

Таким образом для симметричных фигур центробежный момент инерции равен 0.

Координатные оси u иv , проходящие через центр тяжести сечения, относительно которых центробежный момент равен нулю, называютсяглавными центральными осями инерции сечения. Главными они называются потому, что центробежный момент относительно них равен нулю, а центральными – потому, что проходят через центр тяжести сечения.

У сечений, не обладающих симметрией относительно осей x илиy , например у уголка,не будет равен нулю. Для этих сечений определяют положение осейu иv с помощью вычисления угла поворота осейx иy

(13)

Центробежный момент относительно осей u иv -

Формула для определения осевых моментов инерции относительно главных центральных осей u иv :

(14)

где
- осевые моменты инерции относительно центральных осей,

- центробежный момент инерции относительно центральных осей.

1.5. Момент инерции относительно оси, параллельной центральной (теорема Штейнера)

Теорема Штейнера:

Момент инерции относительно оси, параллельной центральной, равен центральному осевому моменту инерции плюс произведение площади всей фигуры на квадрат расстояния между осями.

(15)

Доказательство теоремы Штейнера.

Согласно рис. 5 расстояние у до элементарной площадкиdF

Подставляя значение у в формулу, получим:

Слагаемое
, так как точка С является центром тяжести сечения (см. свойство статических моментов площади сечения относительно центральных осей).

Для прямоугольника высотой h и шириной b :

Осевой момент инерции:

Момент сопротивления изгибу:

момент сопротивления изгибу равен отношению момента инерции к расстоянию наиболее удаленного волокна от нейтральной линии:

т.к.
, то

Для круга:

Полярный момент инерции:

Осевой момент инерции:

Момент сопротивления кручению:

Т.к.
, то

Момент сопротивления изгибу:

Пример 2. Определить момент инерции прямоугольного сечения относительно центральной оси С x .

Решение. Разобьём площадь прямоугольника на элементарные прямоугольники с размерами b (ширина) иdy (высота). Тогда площадь такого прямоугольника (на рис. 6 заштрихована) равна dF =bdy . Вычислим значение осевого момента инерции J x

По аналогии запишем

- осевой момент инерции сечения относительно центральной

Центробежный момент инерции

, так как оси С x и Сy являются осями симметрии.

Пример 3. Определить полярный момент инерции круглого сечения.

Решение. Разобьём круг на бесконечно тонкие кольца толщиной
радиусом, площадь такого кольца
. Подставляя значение
в выражение для полярного момента инерции интегрируя, получим

Учитывая равенство осевых моментов круглого сечения
и

, получаем

Осевые моменты инерции для кольца равны

с – отношение диаметра выреза к наружному диаметру вала.

Лекция №2 «Главные оси и главные моменты инерции

Рассмотрим, как изменяются моменты инерции при повороте координатных осей. Положим, даны моменты инерции некоторого сечения относительно осей 0х , 0у (не обязательно центральных)- ,- осевые моменты инерции сечения. Требуется определить,- осевые моменты относительно осейu ,v , повёрнутых относительно первой системы на угол
(рис. 8)

Так как проекция ломаной линии ОАВС равна проекции замыкающей, находим:

(15)

Исключим uиvв выражениях моментов инерции:



(18)

Рассмотрим два первых уравнения. Складывая их почленно, получим

Таким образом, сумма осевых моментов инерции относительно двух взаимно перпендикулярных осей не зависит от угла
и при повороте осей остается постоянной. Заметим при этом, что

Где - расстояние от начала координат до элементарной площадки (см. рис.5). Таким образом

Где - уже знакомый нам полярный момент инерции:

Определим осевой момент инерции круга относительно диаметра.

Так как в силу симметрии
но, как известно,

Следовательно, для круга

С изменением угла поворота осей
значения моментов именяются, но сумма остается неизменной. Следовательно существует такое значение
, при котором один из моментов инерции достигает своего максимального значения, в то время как другой момент принимает минимальное значение. Дифференцируя выражениепо углу
и приравнивая производную к нулю, находим

(19)

При этом значении угла
один из осевых моментов будет наибольшим, а другой - наименьшим. Одновременно центробежный момент инерции
обращается в нуль, что можно легко проверить, приравнивая к нулю формулу для центробежного момента инерции
.

Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты принимают экстремальные значения, называются главными осями. Если они к тому же являются центральными (точка начала координат совпадает с центром тяжести сечения), то тогда они называютсяглавными центральными осями (u ; v ). Осевые моменты инерции относительно главных осей называютсяглавными моментами инерции - и

И их значение определяется по следующей формуле:

(20)

Знак плюс соответствует максимальному моменту инерции, знак минус - минимальному.

Существует ещё одна геометрическая характеристика – радиус инерции сечения. Эта величина часто используется в теоретических выводах и практических расчётах.

Радиусом инерции сечения относительно некоторой оси, например 0 x , называется величина , определяемая из равенства

(21)

F – площадь поперечного сечения,

- осевой момент инерции сечения,

Из определения следует, что радиус инерции равен расстоянию от оси 0х до той точки, в которой следует сосредоточить (условно) площадь сеченияF, чтобы момент инерции одной этой точки был равен моменту инерции всего сечения. Зная момент инерции сечения и его площадь, можно найти радиус инерции относительно оси 0х :

(22)

Радиусы инерции, соответствующие главным осям, называютсяглавными радиусами инерции и определяются по формулам


(23)

Лекция 3. Кручение стержней круглого поперечного сечения.

Если m = 1, n = 1, тогда получим характеристику

которая называется центробежным моментом инерции .

Центробежный момент инерции относительно осей координат – сумма произведений элементарных площадей dA на их расстояния до этих осей, взятая по всей площади сечения А .

Если хотя бы одна из осей y или z является осью симметрии сечения, центробежный момент инерции такого сечения относительно этих осей равен нулю (так как в этом случае каждой положительной величине z·y·dA можем поставить в соответствие точно такую же, но отрицательную, по другую сторону от оси симметрии сечения, см. рисунок).

Рассмотрим дополнительные геометрические характеристики, которые могут быть получены из перечисленных основных и также часто используются в расчетах на прочность и жесткость.

Полярный момент инерции

Полярным моментом инерции J p называют характеристику

С другой стороны,

Полярный момент инерции (относительно данной точки) – сумма произведений элементарных площадей dA на квадраты их расстояний до этой точки, взятая по всей площади сечения А .

Размерность моментов инерции – м 4 в СИ.

Момент сопротивления

Момент сопротивления относительно некоторой оси – величина равная моменту инерции относительно той же оси отнесенному к расстоянию (y max или z max ) до наиболее удаленной от этой оси точки

Размерность моментов сопротивления – м 3 в СИ.

Радиус инерции

Радиусом инерции сечения относительно некоторой оси, называется величина, определяемая из соотношения:

Радиусы инерции выражаются в м в системе СИ.

Замечание: сечения элементов современных конструкций часто представляют собой некоторую композицию из материалов с разным сопротивлением упругим деформациям, характеризуемым, как известно из курса физики, модулем Юнга E . В самом общем случае неоднородного сечения модуль Юнга является непрерывной функцией координат точек сечения, т. е. E = E(z, y) . Поэтому жесткость неоднородного по упругим свойствам сечения характеризуется более сложными, чем геометрические характеристики однородного сечения, характеристиками, а именно упруго-геометрическими вида



2.2. Вычисление геометрических характеристик простых фигур

Прямоугольное сечение

Определим осевой момент инерции прямоугольника относительно оси z . Разобьем площадь прямоугольника на элементарные площадки с размерами b (ширина) и dy (высота). Тогда площадь такого элементарного прямоугольника (заштрихован) равна dA = b · dy . Подставляя значение dA в первую формулу, получим

По аналогии запишем осевой момент относительно оси у :

Осевые моменты сопротивления прямоугольника:

;

Подобным образом можно получить геометрические характеристики и для других простых фигур.

Круглое сечение

Сначала удобно найти полярный момент инерции J p .

Затем, учитывая, что для круга J z = J y , а J p = J z + J y , найдем J z = J y = J p / 2.

Разобьем круг на бесконечно малые кольца толщиной и радиусом ρ ; площадь такого кольца dA = 2 ∙ π ∙ ρ ∙ dρ . Подставляя выражение для dA в выражение для J p и интегрируя, получим

2.3. Вычисление моментов инерции относительно параллельных осей

z и y :

Требуется определить моменты инерции этого сечения относительно «новых» осей z 1 и y 1 , параллельных центральным и отстоящих от них на расстояние a и b соответственно:

Координаты любой точки в «новой» системе координат z 1 0 1 y 1 можно выразить через координаты в «старых» осях z и y так:

Так как оси z и y – центральные, то статический момент S z = 0.

Окончательно можем записать формулы «перехода» при параллельном переносе осей:

Отметим, что координаты a и b необходимо подставлять с учетом их знака (в системе координат z 1 0 1 y 1 ).

2.4. Вычисление моментов инерции при повороте координатных осей

Пусть известны моменты инерции произвольного сечения относительно центральных осей z, y :

; ;

Повернем оси z , y на угол α против часовой стрелки, считая угол поворота осей в этом направлении положительным.

Требуется определить моменты инерции относительно «новых» (повернутых) осей z 1 и y 1 :

Координаты элементарной площадки dA в «новой» системе координат z 1 0y 1 можно выразить через координаты в «старых» осях так:

Подставляем эти значения в формулы для моментов инерции в «новых» осях и интегрируем почленно:

Проделав аналогичные преобразования с остальными выражениями, запишем окончательно формулы «перехода» при повороте координатных осей:

Отметим, что если сложить два первых уравнения, то получим

т. е. полярный момент инерции есть величина инвариантная (другими словами, неизменная при повороте координатных осей).

2.5. Главные оси и главные моменты инерции

До сих пор рассматривались геометрические характеристики сечений в произвольной системе координат, однако наибольший практический интерес представляет система координат, в которой сечение описывается наименьшим количеством геометрических характеристик. Такая «особая» система координат задается положением главных осей сечения. Введем понятия: главные оси и главные моменты инерции .

Главные оси – две взаимно перпендикулярные оси, относительно которых центробежный момент инерции равен нулю, при этом осевые моменты инерции принимают экстремальные значения (максимум и минимум).

Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями .

Моменты инерции относительно главных осей называются главными моментами инерции.

Главные центральные оси принято обозначать буквами u и v ; главные моменты инерции – J u и J v (по определению J uv = 0).

Выведем выражения, позволяющие находить положение главных осей и величину главных моментов инерции. Зная, что J uv = 0, воспользуемся уравнением (2.3):

Угол α 0 определяет положение главных осей относительно любых центральных осей z и y . Угол α 0 откладывается между осью z и осью u и считается положительным в направлении против часовой стрелки.

Заметим, что если сечение имеет ось симметрии, то, в соответствии со свойством центробежного момента инерции (см. разд.2.1, п.4), такая ось всегда будет главной осью сечения.

Исключая угол α в выражениях (2.1) и (2.2) с помощью (2.4), получим формулы для определения главных осевых моментов инерции:

Запишем правило: ось максимум всегда составляет меньший угол с той из осей (z или y), относительно которой момент инерции имеет большее значение.

2.6. Рациональные формы поперечных сечений

Нормальные напряжения в произвольной точке поперечного сечения балки при прямом изгибе определяются по формуле:

, (2.5)

где М – изгибающий момент в рассматриваемом поперечном сечении; у – расстояние от рассматриваемой точки до главной центральной оси, перпендикулярной плоскости действия изгибающего момента; J x – главный центральный момент инерции сечения.

Наибольшие растягивающие и сжимающие нормальные напряжения в данном поперечном сечении возникают в точках, наиболее удаленных от нейтральной оси. Их определяют по формулам:

; ,

где у 1 и у 2 – расстояния от главной центральной оси Х до наиболее удаленных растянутого и сжатого волокон.

Для балок из пластичных материалов, когда [σ p ] = [σ c ] ([σ p ], [σ c ] – допускаемые напряжения для материала балки соответственно на растяжение и сжатие), применяют сечения, симметричные относительно центральной оси. В этом случае условие прочности имеет вид:

[σ], (2.6)

где W x = J x / y max – момент сопротивления площади поперечного сечения балки относительно главной центральной оси; y max = h / 2 (h – высота сечения); М max – наибольший по абсолютному значению изгибающий момент; [σ] – допускаемое напряжение материала на изгиб.

Кроме условия прочности балка должна удовлетворять и условию экономичности. Наиболее экономичными являются такие формы поперечных сечений, для которых с наименьшей затратой материала (или при наименьшей площади поперечного сечения) получается наибольшая величина момента сопротивления. Чтобы форма сечения была рациональной, необходимо, по возможности, распределять сечение подальше от главной центральной оси.

Например, двутавровая стандартная балка примерно в семь раз прочнее и в тридцать раз жестче, чем балка квадратного поперечного сечения той же площади сделанного из того же материала.

Необходимо иметь в виду, что при изменении положения сечения по отношению к действующей нагрузке прочность балки существенно изменяется, хотя площадь сечения остается неизменной. Следовательно, сечение надо располагать так, чтобы силовая линия совпадала с той из главных осей, относительно которых момент инерции минимален. Следует стремится, чтобы изгиб бруса проходил в плоскости его наибольшей жесткости.

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции» .

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела . Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm , то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

Это общая формула для момента инерции в физике. Для материальной точки массы m , вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:


Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r , а масса – dm . Тогда момент инерции кольца:

Массу кольца можно представить в виде:

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач .

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе . Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.