Соединения железа черного цвета. Химические и физические свойства железа, применение. Химические свойства данных соединений

  • Обозначение - Fe (Iron);
  • Период - IV;
  • Группа - 8 (VIII);
  • Атомная масса - 55,845;
  • Атомный номер - 26;
  • Радиус атома = 126 пм;
  • Ковалентный радиус = 117 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 ;
  • t плавления = 1535°C;
  • t кипения = 2750°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,83/1,64;
  • Степень окисления: +8, +6, +4, +3, +2, +1, 0;
  • Плотность (н. у.) = 7,874 г/см 3 ;
  • Молярный объем = 7,1 см 3 /моль.

Соединения железа :

Железо является самым распространенным металлом в земной коре (5,1% по массе) после алюминия .

На Земле железо в свободном состоянии встречается в незначительных количествах в виде самородков, а также в упавших метеоритах.

Промышленным способом железо добывают на железнорудных месторождениях, из железосодержащих минералов: магнитного, красного, бурого железняка.

Следует сказать, что железо входит в состав многих природных минералов, обуславливая их природную окраску. Окраска минералов зависит зависит от концентрации и соотношения ионов железа Fe 2+ /Fe 3+ , а также от атомов, окружающих эти ионы. Например, присутствие примесей ионов железа влияет на окраску многих драгоценных и полудрагоценных камней: топазов (от бледно-желтого до красного), сапфиров (от голубого до темно-синего), аквамаринов (от светло-голубого до зеленовато-голубого) и проч.

Железо содержится в тканях животных и растений, например, в организме взрослого человека присутствует около 5 г железа. Железо является жизненно важным элементом, оно входит в состав белка гемоглобина, участвуя в транспортировке кислорода от легких к тканям и клеткам. При недостатке железа в организме человека развивается малокровие (железодефицитная анемия).


Рис. Строение атома железа .

Электронная конфигурация атома железа - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 (см. Электронная структура атомов). В образовании химических связей с другими элементами могут участвовать 2 электрона, находящихся на внешнем 4s-уровне + 6 электронов 3d-подуровня (всего 8 электронов), поэтому в соединениях железо может принимать степени окисления +8, +6, +4, +3, +2, +1, (наиболее часто встречаются +3, +2). Железо обладает средней химической активностью.


Рис. Степени окисления железа: +2, +3.

Физические свойства железа:

  • металл серебристо-белого цвета;
  • в чистом виде достаточно мягкий и пластичный;
  • хобладает хорошей тепло- и электропроводимостью.

Железо существует в виде четырех модификаций (различаются строением кристаллической решетки): α-железо; β-железо; γ-железо; δ-железо.

Химические свойства железа

  • реагирует с кислородом, в зависимости от температуры и концентрации кислорода могут образовываться различные продукты или смесь продуктов окисления железа (FeO, Fe 2 O 3 , Fe 3 O 4):
    3Fe + 2O 2 = Fe 3 O 4 ;
  • окисление железа при низких температурах:
    4Fe + 3O 2 = 2Fe 2 O 3 ;
  • реагирует с водяным паром:
    3Fe + 4H 2 O = Fe 3 O 4 + 4H 2 ;
  • мелко раздробленное железо реагирует при нагревании с серой и хлором (сульфид и хлорид железа):
    Fe + S = FeS; 2Fe + 3Cl 2 = 2FeCl 3 ;
  • при высоких температурах реагирует с кремнием, углеродом, фосфором:
    3Fe + C = Fe 3 C;
  • с другими металлами и с неметаллами железо может образовывать сплавы;
  • железо вытесняет менее активные металлы из их солей:
    Fe + CuCl 2 = FeCl 2 + Cu;
  • с разбавленными кислотами железо выступает в роли восстановителя, образуя соли:
    Fe + 2HCl = FeCl 2 + H 2 ;
  • с разбавленной азотной кислотой железо образует различные продукты восстановления кислоты, в зависимости от ее концентрации (N 2 , N 2 O, NO 2).

Получение и применение железа

Промышленное железо получают выплавкой чугуна и стали.

Чугун - это сплав железа с примесями кремния, марганца, серы, фосфора, углерода. Содержание углерода в чугуне превышает 2% (в стали менее 2%).

Чистое железо получают:

  • в кислородных конверторах из чугуна;
  • восстановлением оксидов железа водородом и двухвалентным оксидом углерода;
  • электролизом соответствующих солей.

Чугун получают из железных руд восстановлением оксидов железа. Выплавку чугуна осуществляют в доменных печах. В качестве источника тепла в доменной печи используется кокс.

Доменная печь является очень сложным техническим сооружением высотой в несколько десятков метров. Она выкладывается из огнеупорного кирпича и защищается внешним стальным кожухом. По состоянию на 2013 год самая крупная доменная печь была построена в Южной Корее сталелитейной компанией POSCO на металлургическом заводе в городе Кванъян (объем печи после модернизации составил 6000 кубометров при ежегодной производительности 5 700 000 тонн).


Рис. Доменная печь .

Процесс выплавки чугуна в доменной печи идет непрерывно в течение нескольких десятилетий, пока печь не выработает свой ресурс.


Рис. Процесс выплавки чугуна в доменной печи .

  • обогащенные руды (магнитный, красный, бурый железняк) и кокс засыпаются через колошник, расположенный в самом верху доменной печи;
  • процессы восстановления железа из руды под действием оксида углерода (II) протекают в средней части доменной печи (шахте) при температуре 450-1100°C (оксиды железа восстанавливаются до металла):
    • 450-500°C - 3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 ;
    • 600°C - Fe 3 O 4 + CO = 3FeO + CO 2 ;
    • 800°C - FeO + CO = Fe + CO 2 ;
    • часть двухвалентного оксида железа восстанавливается коксом: FeO + C = Fe + CO.
  • параллельно идет процесс восстановления оксидов кремния и марганца (входят в железную руду в виде примесей), кремний и марганец входят в состав выплавляющегося чугуна:
    • SiO 2 + 2C = Si + 2CO;
    • Mn 2 O 3 + 3C = 2Mn + 3CO.
  • при термическом разложении известняка (вносится в доменную печь) образуется оксид кальция, который реагирует с оксидами кремния и алюминия, содержащихся в руде:
    • CaCO 3 = CaO + CO 2 ;
    • CaO + SiO 2 = CaSiO 3 ;
    • CaO + Al 2 O 3 = Ca(AlO 2) 2 .
  • при 1100°C процесс восстановления железа прекращается;
  • ниже шахты располагается распар, самая широкая часть доменной печи, ниже которой следует заплечник, в котором выгорает кокс и образуются жидкие продукты плавки - чугун и шлаки, накапливающиеся в самом низу печи - горне;
  • в верхней части горна при температуре 1500°C в струе вдуваемого воздуха происходит интенсивное сгорание кокса: C + O 2 = CO 2 ;
  • проходя через раскаленный кокс, оксид углерода (IV) превращается в оксид углерода (II), являющийся восстановителем железа (см. выше): CO 2 + C = 2CO;
  • шлаки, образованные силикатами и алюмосиликатами кальция, располагаются выше чугуна, защищая его от действия кислорода;
  • через специальные отверстия, расположенные на разных уровнях горна, чугун и шлаки выпускаются наружу;
  • бОльшая часть чугуна идет на дальнейшую переработку - выплавку стали.

Сталь выплавляют из чугуна и металлолома конверторным способом (мартеновский уже устарел, хотя еще и применяется) или электроплавкой (в электропечах, индукционных печах). Суть процесса (передела чугуна) заключается в понижении концентрации углерода и других примесей путем окисления кислородом.

Как уже было сказано выше, концентрация углерода в стали не превышает 2%. Благодаря этому, сталь в отличие от чугуна достаточно легко поддается ковке и прокатке, что позволяет изготавливать из нее разнообразные изделия, обладающие высокой твердостью и прочностью.

Твердость стали зависит от содержания углерода (чем больше углерода, тем тверже сталь) в конкретной марке стали и условий термообработки. При отпуске (медленном охлаждении) сталь становится мягкой; при закалке (быстром охлаждении) сталь получается очень твердой.

Для придания стали нужных специфических свойств в нее добавляют лигирующие добавки: хром, никель, кремний, молибден, ванадий, марганец и проч.

Чугун и сталь являются важнейшими конструкционными материалами в подавляющем большинстве отраслей народного хозяйства.

Биологическая роль железа:

  • в организме взрослого человека содержится около 5 г железа;
  • железо играет важную роль в работе кроветворных органов;
  • железо входит в состав многих сложных белковых комплексов (гемоглобина, миоглобина, различных ферментов).
Подробности Категория: Просмотров: 10184

ЖЕЛЕЗО , Fe, химический элемент, атомный вес 55,84, порядковый номер 26; расположен в VIII группе периодической системы в одном ряду с кобальтом и никелем, температура плавления - 1529°С, температура кипения - 2450°С; в твердом состоянии имеет синевато-серебристый цвет. В свободном виде железо встречается лишь в метеоритах, которые, однако, содержат примеси Ni, Р, С и других элементов. В природе соединения железа широко распространены повсеместно (почва, минералы, гемоглобин животных, хлорофилл растений), гл. обр. в виде окислов, гидратов окислов и сернистых соединений, а также углекислого железа, из которых и состоит большинство железных руд.

Химически чистое железо получается путем нагревания щавелевокислого железа, при чем при 440°С сначала получается матовый порошок закиси железа, обладающий способностью воспламеняться на воздухе (т. н. пирофорическое железо); при последующем восстановлении этой закиси образовавшийся порошок приобретает серый цвет и теряет пирофорические свойства, переходя в металлическое железо. При восстановлении закиси железа при 700°С железо выделяется в виде мелких кристаллов, которые затем сплавляются в вакууме. Другой способ получения химически чистого железа состоит в электролизе раствора солей железа, например FeSО 4 или FeCl 3 в смеси с MgSО 4 , СаСl 2 или NH 4 Cl (при температуре выше 100°С). Однако, при этом железо окклюдирует значительное количество электролитического водорода, вследствие чего приобретает твердость. При прокаливании до 700°С водород выделяется, и железо становится мягким и режется ножом, как свинец (твердость по шкале Моса - 4,5). Весьма чистое железо может быть получено алюминотермическим путем из чистой окиси железо. (см. Алюминотермия). Хорошо образованные кристаллы железа встречаются редко. В полостях больших кусков литого железа иногда образуются кристаллы октаэдрической формы. Характерным свойством железа является его размягчаемость, тягучесть и ковкость при температуре, значительно более низкой, чем температура плавления. При действии на железо крепкой азотной кислоты (не содержащей низших окислов азота), железо покрывается налетом окислов и становится нерастворимым в азотной кислоте.

Соединения железа

Легко соединяясь с кислородом, железо образует несколько окислов: FeO - закись железа, Fe 2 О 3 - окись железа, FeО 3 - ангидрид железной кислоты и FeО 4 – ангидрид наджелезной кислоты. Кроме того, железо образует еще окисел смешанного типа Fe 3 О 4 - закись-окись железа, т. н. железную окалину. В сухом воздухе, однако, железо не окисляется; ржавчина представляет собой водные окислы железа, образующиеся при участии влаги воздуха и СО 2 . Закиси железа FeO соответствует гидрат Fe(OH) 2 и целый ряд солей двухвалентного железа, способных при окислении переходить в соли окиси железа, Fe 2 О 3 , в которой железо проявляет себя в качестве трехвалентного элемента; на воздухе гидрат закиси железа, отличающийся сильными восстановительными свойствами, легко окисляется, переходя в гидрат окиси железа. Гидрат закиси железа слабо растворяется в воде, и раствор этот имеет явственно щелочную реакцию, свидетельствующую об основном характере двухвалентного железа. Окись железа встречается в природе (см. Железный сурик), искусственно же м. б. получена в виде красного порошка при прокаливании железного порошка и при обжигании серного колчедана для получения сернистого газа. Безводная окись железа, Fе 2 O 3 , м. б. получена в двух модификациях, причем переход одной из них в другую происходит при нагревании и сопровождается значительным выделением тепла (самонакаливанием). При сильном прокаливании Fe 2 О 3 выделяет кислород и переходит в магнитную закись-окись, Fe 3 О 4 . При действии щелочей на растворы солей трехвалентного железа выпадает осадок гидрата Fe 4 О 9 H 6 (2Fe 2 О 3 ·3Н 2 О); при кипячении его с водой образуется гидрат Fe 2 О 3 ·Н 2 О, трудно растворяющийся в кислотах. Железо образует соединения с различными металлоидами: с С, Р, S, с галоидами, а также и с металлами, например с Mn, Cr, W, Сu и др.

Соли железа разделяются на закисные - двухвалентного железа (ферро-соли) и на окисные - трехвалентного железа (ферри-соли).

Соли закисного железа

Хлористое железо , FeCl 2 , получается при действии сухого хлора на железо, в виде бесцветных листочков; при растворении железа в НСl хлористое железо получается в виде гидрата FeCl 2 ·4H 2 O и применяется в виде водных или спиртовых растворов в медицине. Йодистое железо , FeJ 2 , получается из железа и йода под водой в виде зеленых листочков и применяется в медицине (Sirupus ferri jodati); при дальнейшем действии йода образуется FeJ 3 (Liquor ferri sesquijodati).

Сернокислое закисное железо, железный купорос , FeSО 4 ·7H 2 О (зеленые кристаллы) образуется в природе в результате окисления пирита и серных колчеданов; эта соль образуется также в качестве побочного продукта при производстве квасцов; при выветривании или при нагревании до 300°С переходит в белую безводную соль - FeSО 4 ; образует также гидраты с 5, 4, 3, 2 и 1 частицами воды; легко растворяется в холодной воде (в горячей до 300%); раствор имеет кислую реакцию вследствие гидролиза; на воздухе окисляется, особенно легко в присутствии другого окисляющегося вещества, например, щавелевокислых солей, которые FeSО 4 вовлекает в сопряженную реакцию окисления, обесцвечивает КМnO 4 ; при этом процесс протекает по следующему уравнению:

2KMnO 4 + 10FeSO 4 +8H 2 SO 4 = 2MnSО 4 + K 2 SО 4 + 5Fe 2 (SO 4) 2 + 8Н 2 О.

Для этой цели, однако, применяется более постоянная на воздухе двойная соль Мора (NH 4) 2 Fe(SО 4) 2 ·6Н 2 О. Железный купорос применяется в газовом анализе для определения окиси азота, поглощаемой раствором FeSО 4 с образованием окрашенного в тёмно-бурый цвет комплекса (FeNО)SО 4 , а также для получения чернил (с дубильными кислотами), в качестве протравы при крашении, для связывания зловонных газов (H 2 S, NH 3) в отхожих местах и т. д.

Закисные соли железа применяются в фотографии благодаря их способности восстанавливать серебряные соединения на скрытом изображении, запечатлевшемся на фотографической пластинке.

Углекислое железо , FeCO 3 , встречается в природе в виде сидерита или железного шпата; получаемое осаждением водных растворов закисных солей железа карбонатами углекислое железо легко теряет СО 2 и окисляется на воздухе до Fe 2 О 3 .

Бикарбонат железа , H 2 Fe(CО 3) 2 , растворим в воде и встречается в природе в железистых источниках, из которых, окисляясь, выделяется на поверхности земли в виде гидрата окиси железа, Fe(OH) 3 , переходящего в бурый железняк.

Фосфорнокислое железо , Fе 3 (РO 4) 2 ·8Н 2 O, белый осадок; встречается в природе слегка окрашенный, вследствие окисления железа, в голубой цвет, в виде вивианита .

Соли окисного железа

Хлорное железо , FeCl 3 (Fe 2 Cl 6), получается при действии избытка хлора на железо в виде гексагональных красных табличек; хлорное железо на воздухе расплывается; из воды кристаллизуется в виде FeCl 3 ·6Н 2 О (желтые кристаллы); растворы имеют кислую реакцию; при диализе постепенно гидролизуется почти до конца с образованием коллоидного раствора гидрата Fe(OH) 3 . FeCl 3 растворяется в спирте и в смеси спирта с эфиром, при нагревании FeCl 3 ·6H 2 О разлагается на НСl и Fe 2 O 3 ; применяется в качестве протравы и в качестве кровоостанавливающего средства (Liquor ferri sesquichlorati).

Сернокислое окисное железо , Fe 2 (SO 4) 3 , в безводном состоянии имеет желтоватый цвет, в растворе сильно гидролизуется; при нагревании раствора выпадают основные соли; железные квасцы, MFe(SO 4) 2 ·12H 2 O, М - одновалентный щелочной металл; лучше всех кристаллизуются аммонийные квасцы, NH 4 Fe(SО 4) 2 ·12Н 2 О.

Окисел FeО 3 - ангидрид железной кислоты, равно как и гидрат этого окисла H 2 FeО 4 - железная кислота - в свободном состоянии не м. б. получены в виду их крайней непрочности; но в щелочных растворах могут существовать соли железной кислоты, ферраты (например K 2 FeО 4), образующиеся при накаливании железного порошка с селитрой или КСlO 3 . Известна также малорастворимая бариевая соль железной кислоты BaFeО 4 ; т. о., железная кислота в некоторых отношениях весьма напоминает серную и хромовую кислоты. В 1926 г. киевским химиком Горалевичем описаны соединения окисла восьмивалентного железа - наджелезного ангидрида FeО 4 , полученные при сплавлении Fe 2 О 3 с селитрой или бертолетовой солью в виде калиевой соли наджелезной кислоты K 2 FeО 5 ; FeО 4 - газообразное вещество, не образующее с водой наджелезной кислоты H 2 FeО 5 , которая, однако, м. б. выделена в свободном состоянии разложением кислотами соли K 2 FeО 5 . Бариевая соль BaFeO 5 ·7Н 2 О, а также кальциевая и стронциевая соли получены Горалевичем в виде неразлагающихся белых кристаллов, выделяющих лишь при 250-300°С воду и при этом зеленеющих.

Железо дает соединения: с азотом - азотистое железо (нитрид) Fe 2 N при нагревании порошка железа в струе NH 3 , с углеродом - карбид Fe 3 C при насыщении в электрической печи железа углем. Кроме того, изучен целый ряд соединений железа с окисью углерода - карбонилы железа , например, пентакарбонил Fe(CO) 5 - слегка окрашенная жидкость с около 102,9°С (при 749 мм, удельный вес 1,4937), затем оранжевое твердое тело Fe 2 (CO) 9 , нерастворимое в эфире и хлороформе, с удельным весом 2,085.

Большое значение имеют цианистые соединения железа . Кроме простых цианидов Fe(CN) 2 и Fe(CN) 3 , железо образует целый ряд комплексных соединений с цианистыми солями, как, например, соли железистосинеродистой кислоты H 4 Fe(CN) 6 , и соли железосинеродистой кислоты H 3 Fe(CN) 6 , например, красная кровяная соль, которые, в свою очередь вступают в реакции обменного разложения с солями закисного и окисного железа, образуя окрашенные в синий цвет соединения - берлинскую лазурь и турнбуллову синь. При замене в солях железистосинеродистой кислоты H 4 Fe(CN) 6 одной группы CN на одновалентные группы (NO, NО 2 , NH 3 , SО 3 , СО) образуются пруссо-соли, например, нитропруссид натрия (нитрожелезистосинеродистый натрий) Na 2 ·2Н 2 О, получаемый действием дымящей HNО 3 на K 4 Fe(CN) 6 , с последующей нейтрализацией содой, в виде рубиново-красных кристаллов, отделяемых кристаллизацией от образующейся одновременно селитры; соответствующая нитрожелезистосинеродистая кислота H 2 кристаллизуется также в виде тёмно-красных кристаллов. Нитропруссид натрия применяется в качестве чувствительного реактива на сероводород и сернистые металлы, с которыми он дает кроваво-красное, переходящее затем в синее, окрашивание. При действии медного купороса на нитропруссид натрия образуется бледно-зелёный нерастворимый в воде и в спирте осадок, применяемый для испытания эфирных масел.

Аналитически железо обнаруживается действием на его соли, в щелочном растворе, желтой кровяной соли. Соли трехвалентного железа образуют при этом синий осадок берлинской лазури. Соли двухвалентного железа образуют синий осадок турнбулловой сини при действии на них красной кровяной соли. С роданистым аммонием NH 4 CNS соли трехвалентного железа образуют растворимое в воде с кроваво-красным окрашиванием родановое железо Fe(CNS) 3 ; с таннином соли окисного железа образуют чернила. Интенсивной окраской отличаются также и медные соли железистосинеродистой кислоты, которые находят себе применение (увахромовый метод) в цветной фотографии. Из соединений железа, применяемых в медицине, кроме упомянутых галоидных соединений железа, имеют значение: металлическое железо (F. hydrogenio reductum), лимоннокислое железо (F. Citricum - 20% Fe), экстракт яблочнокислого железа (Extractum ferri pomatum), железный альбуминат (Liquor ferri albuminatum), ферратин - белковое соединение с 6% железа; ферратоза - раствор ферратина, карниферрин - соединение железа с нуклеином (30% Fe); ферратоген из нуклеина дрожжей (1% Fe), гематоген - 70%-ный раствор гемоглобина в глицерине, гемол - гемоглобин , восстановленный цинковой пылью.

Физические свойства железа

Имеющиеся в литературе числовые данные, характеризующие различные физические свойства железа, колеблются вследствие трудности получения железа в химически чистом состоянии. Поэтому наиболее достоверными являются данные, полученные для электролитического железа, в котором общее содержание примесей (С, Si, Mn, S, Р) не превышает 0,01-0,03%. Приводимые ниже данные в большинстве случаев и относятся к такому железу. Для него температура плавления равна 1528°С ± 3°С (Руер и Клеспер, 1914 г.), a температура кипения ≈ 2450°С. В твердом состоянии железо существует в четырех различных модификациях - α, β, γ и δ, для которых довольно точно установлены следующие температурные пределы:

Переход железа из одной модификации в другую обнаруживается на кривых охлаждения и нагревания критическими точками, для которых приняты следующие обозначения:

Указанные критические точки представлены на фиг. 1 схематическими кривыми нагревания и охлаждения. Существование модификаций δ-, γ- и α-Fe считается в настоящее время бесспорным, самостоятельное же существование β-Fe оспаривается вследствие недостаточно резкого отличия его свойств от свойств α-Fe. Все модификации железа кристаллизуются в форме куба, причем α, β и δ имеют пространственную решетку центрированного куба, а γ-Fe - куба с центрированными гранями. Наиболее отчетливые кристаллографические характеристики модификаций железа получены на рентгеновских спектрах, как это представлено на фиг. 2 (Вестгрин, 1929 г.).

Из приведенных рентгенограмм следует, что для α-, β- и δ-Fe линии рентгеновского спектра одни и те же; они соответствуют решетке центрированного куба с параметрами 2,87, 2,90 и 2,93 Ȧ, а для γ-Fe спектр соответствует решетке куба с центрированными гранями и параметрами 3,63-3,68 А.

Удельный вес железа колеблется в пределах от 7,855 до 7,864 (Кросс и Гилль, 1927 г.). При нагревании удельный вес железа падает вследствие теплового расширения, для которого коэффициенты увеличиваются с температурой, как показывают данные табл. 1 (Дризен, 1914 г.).

Понижение коэффициентов расширения в интервалах 20-800°С, 20-900°С, 700-800°С и 800- 900°С объясняется аномалиями в расширении при переходе через критические точки А С2 и А С3 . Этот переход сопровождается сжатием, особенно резко выраженным в точке А С3 , как показывают кривые сжатия и расширения на фиг. 3. Плавление железа сопровождается расширением его на 4,4% (Гонда и Энда, 1926 г.). Теплоемкость железа довольно значительна по сравнению с другими металлами и выражается для разных температурных интервалов величинами от 0,11 до 0,20 Сal, как показывают данные табл. 2 (Обергоффер и Гроссе, 1927 г.) и построенная на основании их кривая (фиг. 4).

В приведенных данных превращения А 2 , А 3 , А 4 и плавление железа обнаруживаются настолько отчетливо, что для них легко вычисляются тепловые эффекты: А 3 ... + 6,765 Сal, А 4 ... + 2,531 Сal, плавление железа... - 64,38 Сal (по С. Умино, 1926 год, - 69,20 Сal).

Железо характеризуется приблизительно в 6-7 раз меньшей теплопроводностью, чем серебро, и в 2 раза меньшей, чем алюминий; а именно, теплопроводность железа равняется при 0°С - 0,2070, при 100°С - 0,1567, при 200°С - 0,1357 и при 275°С - 0,1120 Cal/см·сек·°С. Наиболее характерными свойствами железа являются магнитные, выражаемые целым рядом магнитных констант, получаемых при полном цикле намагничивания железа. Эти константы для электролитического железа выражаются следующими значениями в гауссах (Гумлих, 1909 и 1918 гг.):

При переходе через точку А с2 ферромагнитные свойства железа почти исчезают и м. б. обнаружены только при очень точных магнитных измерениях. Практически β-, γ- и δ-модификации считаются немагнитными. Электропроводность для железа при 20°С равняется R -1 мо м/мм 2 (где R - электрическое сопротивление железа, равное 0,099 Ω мм 2 /м). Температурный коэффициент электросопротивления а0-100° х10 5 колеблется в пределах от 560 до 660, где

Холодная обработка (прокатка, ковка, протяжка, штамповка) очень заметно отражается на физических свойствах железа. Так, %-ное изменение их при холодной прокатке выражается следующими цифрами (Геренс, 1911 г.): коэрцитивное напряжение +323%, магнитный гистерезис +222%, электросопротивление + 2%, удельный вес - 1%, магнитная проницаемость - 65%. Последнее обстоятельство делает понятными те значительные колебания физических свойств, которые наблюдаются у разных исследователей: к влиянию примесей нередко присоединяется еще и влияние холодной механической обработки.

О механических свойствах чистого железа известно очень мало. Электролитическое железо, сплавленное в пустоте, обнаружило: временное сопротивление на разрыв 25 кг/мм 2 , удлинение - 60%, сжатие поперечного сечения - 85%, твердость по Бринеллю - от 60 до 70.

Структура железа находится в зависимости от содержания в нем примесей (хотя бы и в незначительных количествах) и предварительной обработки материала. Микроструктура железа, как и других чистых металлов, состоит из более или менее крупных зерен (кристаллитов), носящих здесь название феррита

Размеры и резкость их очертаний зависят гл. обр. от скорости охлаждения железа: чем последняя меньше, тем больше развиты зерна и тем резче их контуры. С поверхности зерна бывают окрашены чаще всего неодинаково вследствие неодинаковой кристаллографии, ориентировки их и неодинакового травящего действия реактивов по разным направлениям в кристалле. Нередко зерна бывают вытянуты в одном направлении в результате механической обработки. Если обработка происходила при невысоких температурах, то на поверхности зерен появляются линии сдвигов (линии Неймана), как результат скольжения отдельных частей кристаллитов по плоскостям их спайности. Эти линии являются одним из признаков наклепа и тех изменений в свойствах, о которых было упомянуто выше.

Железо в металлургии

Термин железо в современной металлургии присваивается лишь сварочному железу, т. е. малоуглеродистому продукту, получаемому в тестообразном состоянии при температуре, не достаточной для плавления железа, но высокой настолько, что отдельные частицы его хорошо свариваются друг с другом, давая после проковки однородный мягкий продукт, не принимающий закалки. Железо (в указанном смысле слова) получается: 1) непосредственно из руды в тестообразном состоянии сыродутным процессом; 2) таким же способом, но при более низкой температуре, недостаточной для сваривания частиц железа; 3) переделом чугуна кричным процессом; 4) переделом чугуна пудлингованием.

1) Сыродутный процесс в наст. время применяется лишь малокультурными народами и в таких местностях, куда не может (по отсутствию удобных путей сообщения) проникнуть американское или европейское железо, получаемое современными способами. Процесс ведется в открытых сыродутных горнах и печах. Сырыми материалами для него служат железная руда (обыкновенно бурый железняк) и древесный уголь. Уголь засыпается в горн в той половине его, куда подводится дутье, руда же - кучей, с противоположной стороны. Образующаяся в толстом слое горящего угля окись углерода проходит через всю толщу руды и, имея высокую температуру, восстанавливает железо. Восстановление руды совершается постепенно - с поверхности отдельных кусков к сердцевине. Начинаясь с верхних частей кучи, оно ускоряется по мере продвижения руды в область более высокой температуры; окись железа при этом переходит сначала в магнитную окись, затем в закись, и, наконец, на поверхности кусков руды появляется металлическое железо. В то же время землистые примеси руды (пустая порода) соединяются с еще не восстановленной закисью железа и образуют легкоплавкий железистый шлак, который вытапливается через щели металлической оболочки, образующей как бы скорлупу в каждом куске руды. Будучи нагретыми до белокалильного жара, эти скорлупки свариваются друг с другом, образуя на дне горна губчатую массу железа - крицу, проникнутую шлаком. Для отделения от последнего вынутую из горна крицу разрубают на несколько частей, из которых каждую проковывают, подваривая, после охлаждения в том же горне в полосы или прямо в изделия (вещи домашнего обихода, оружие). В Индии сыродутный процесс ведется и теперь в сыродутных печах, которые отличаются от горнов только несколько большей высотой - около 1,5 м. Стены печей делаются из глиняной массы (не кирпича) и служат лишь одну плавку. Дутье подается в печь через одну фурму мехами, приводимыми в движение ногами или руками. В пустую печь загружается некоторое количество древесного угля («холостая колоша»), а затем попеременно, отдельными слоями, руда и уголь, при чем количество первой постепенно увеличивается до тех пор, пока не дойдет до определенного опытом отношения к углю; вес всей засыпанной руды определяется желаемым весом крицы, который, вообще говоря, незначителен. Процесс восстановления идет так же, как и в горне; железо тоже полностью не восстанавливается, и получающаяся на лещади крица заключает в себе много железистого шлака. Крицу извлекают разломкой печи и разрубают на части, в 2-3 кг весом. Каждую из них нагревают в кузнечном горне и обрабатывают под молотом; в результате получается превосходное мягкое железо, служащее, между прочим, материалом для изготовления индийской стали «вуц» (булат). Состав его следующий (в %):

Ничтожное содержание элементов - примесей железа - или совершенное их отсутствие объясняется чистотой руды, неполнотой восстановления железа и низкой температурой в печи. Расход древесного угля благодаря малым размерам горнов и печей и периодичности их действия очень велик. В Финляндии, Швеции и на Урале железо выплавляли в сыродутной печи Хусгавеля, в которой можно было регулировать ход процесса восстановления и насыщения железа углеродом; расход угля в ней - до 1,1 на единицу железа, выход которого достигал 90% содержания его в руде.

2) В будущем нужно ожидать развития производства железа непосредственно из руды не применением сыродутного процесса, а восстановлением железа при температуре, недостаточной для образования шлака и даже для спекания пустой породы руды (1000°С). Преимущества такого процесса - возможность применения низкосортных видов топлива, устранение флюса и расхода тепла на плавление шлака.

3) Получение сварочного железа переделом чугуна кричным процессом ведется в кричных горнах гл. обр. в Швеции (у нас - на Урале). Для передела выплавляют специальный чугун, т. н. ланкаширский, дающий наименьший угар. В составе его: 0,3-0,45% Si, 0,5-0,6% Mn, 0,02 Р, <0,01% S. Такой чугун в изломе кажется белым или половинчатым. Горючим в кричных горнах может служить только древесный уголь.

Процесс ведется след. обр.: горн, освобожденный от крицы, но с оставшимся на донной доске спелым шлаком конца процесса, наполняется углем, гл. обр. сосновым, на который укладывается подогретый продуктами горения чугун в количестве 165-175 кг (на 3/8 м 2 поперечного сечения горна приходится 100 кг садки чугуна). Поворотом клапана в воздухопроводе дутье направляется через трубы, расположенные в подсводовом пространстве горна, и нагревается здесь до температуры в 150-200°С, ускоряя т. о. плавление чугуна. Плавящийся чугун все время поддерживается (при помощи ломов) на угле выше фурм. При такой работе вся масса чугуна подвергается окислительному действию кислорода воздуха и углекислоты, проходя зону горения в виде капель. Большая поверхность их способствует быстрому окислению железа и его примесей - кремния, марганца и углерода. Смотря по содержанию этих примесей, чугун в большей или меньшей степени теряет их, прежде чем соберется на дне горна. Т. к. в шведском горне переделывается малокремнистый и маломарганцовый чугун, то, проходя горизонт фурм, он теряет весь свой Si и Мn (окислы которых с закисью железа образуют основной шлак) и значительную часть углерода. Плавление чугуна продолжается 20-25 мин. По окончании этого процесса пускают в горн холодное дутье. Осевший на дно горна металл начинает реагировать с находящимися там же спелыми шлаками, содержащими в себе большой избыток (по сравнению с количеством кремнезема) окислов железа - Fe 3 О 4 и FeO, окисляющих углерод с выделением окиси углерода, что приводит в кипение весь металл. Когда металл загустеет (от потери углерода) и «сядет товаром», последний поднимают ломами выше фурм, пускают опять горячее дутье и плавят «товар».

Во время вторичного плавления металл окисляется кислородом как дутья, так и шлаков, которые из него вытапливаются. На дно горна после первого подъема падает металл, достаточно мягкий для того, чтобы из отдельных наиболее спелых частей его собирать крицу. Но прежде, при употреблении кремнистых сортов чугуна, приходилось прибегать ко второму и даже третьему подъему товара, что, конечно, уменьшало производительность горна, увеличивало расход горючего и угар железа. На результаты работы оказывали влияние расстояние фурм от донной доски (глубина горна) и наклон фурм: чем круче поставлена фурма и меньше глубина горна, тем значительнее действие окислительной атмосферы на металл. Более пологий наклон фурм, как и большая глубина горна, уменьшает непосредственное действие кислорода дутья, предоставляя, т. о., большую роль действию шлака на примеси железа; окисление ими идет медленнее, но зато без угара железа. При всяких данных условиях наивыгоднейшее положение фурм относительно донной доски определяется опытом; в современном шведском горне глаз фурмы устанавливается на расстоянии 220 мм от донной доски, а наклон фурм меняется в тесных пределах - от 11 до 12°.

Получающаяся на дне горна крица заключает в себе, в отличие от сыродутной, очень мало механически увлеченного шлака; что же касается химических примесей железа, то Si, Мn и С м. б. полностью удалены (указываемое анализами ничтожное содержание Si и Мn входит в состав механической примеси - шлака), а сера - только отчасти, окисляясь дутьем во время плавления. В это же время окисляется и фосфор, уходя в шлак в виде фосфорножелезной соли, но последняя затем восстанавливается углеродом, и конечный металл может заключать в себе даже относительно больше фосфора (от угара железа), чем исходный чугун. Вот почему для получения первоклассного металла для экспорта в Швеции берут в передел исключительно чистый в отношении Р чугун. Вынутую из горна готовую крицу разрубают на три части (каждая 50-55 кг) и обжимают их под молотом, придавая вид параллелепипеда.

Длительность процесса передела в шведском кричном горне - от 65 до 80 мин.; в сутки получается от 2,5 до 3,5 тонн обжатых кусков «на огонь», при расходе древесного угля всего 0,32-0,40 на единицу готового материала и выходе его от 89 до 93,5% заданного в передел чугуна. В самое последнее время в Швеции были произведены удачные опыты передела жидкого чугуна, взятого от доменных печей, и ускорения процесса кипения перемешиванием металла при помощи механических граблей; при этом угар снизился до 7%, а расход угля - до 0,25.

О химическом составе шведского и южно-уральского железа дают понятие следующие данные (в %):

Из всех родов железа, получаемых промышленными способами, шведское кричное наиболее приближается к химически чистому и вместо последнего применяется в лабораторной практике и исследовательских работах. От сыродутного железа оно отличается своей однородностью, а от самого мягкого мартеновского металла (литого железа) отсутствием марганца; ему свойственна высшая степень свариваемости, тягучести и ковкости. Шведское кричное железо обнаруживает незначительное временное сопротивление на разрыв - всего около 30 кг/мм 2 , при удлинении в 40% и уменьшении поперечного сечения в 75%. В настоящее время годовая производительность кричного железа в Швеции упала до 50000 т, так как после войны 1914-18 гг. область промышленных применений для этого железа сильно сократилась. Наибольшее количество его идет на изготовление (в Англии гл. обр. и в Германии) высших сортов инструментальной и специальной сталей; в самой Швеции из него делают специальную проволоку («цветочную»), подковные гвозди, хорошо кующиеся в холодном состоянии, цепи и полосовую заготовку для сварных труб. Для последних двух целей особенно важны свойства кричного железа: надежная свариваемость, а для труб, сверх того, высшая устойчивость против ржавления.

4) Развитие производства железа кричным процессом влекло за собой истребление лесов; после того как последние в различных странах были взяты под защиту закона, ограничившего их вырубку годовым приростом, Швеция, а затем и Россия - лесистые страны, изобилующие рудами высокого качества, - сделались главными поставщиками железа на международном рынке в течение всего 18 в. В 1784 г. англичанин Корт изобрел пудлингование - процесс передела чугуна на поду пламенной печи, в топке которой сжигался каменный уголь. После смерти Корта Роджерс и Голл ввели существенные улучшения в конструкцию пудлинговой печи, что способствовало быстрому распространению пудлингования во всех промышленных странах и совершенно изменило характер и размеры производства в них железа в течение первой половины 19 века. Этим процессом получили ту массу металла, которая понадобилась для постройки железных судов, железных дорог, локомотивов, паровых котлов и машин.

Топливом для пудлингования служит длиннопламенный каменный уголь, но там, где его нет, приходилось прибегать и к бурому углю, а у нас на Урале - к дровам. Сосновые дрова дают более длинное пламя, чем каменный уголь; оно хорошо греет, но содержание влаги в дровах не должно превосходить 12%. Впоследствии на Урале была применена к пудлингованию регенеративная печь Сименса. Наконец, в США и у нас (в Волжском и Камском бассейнах) пудлинговые печи работали на нефти, распыляемой в рабочее пространство печи непосредственно.

Для быстроты передела и уменьшения расхода топлива желательно иметь холодный пудлинговый чугун; при выплавке его на коксе, однако, в продукте получается много серы (0,2 и даже 0,3%), а при высоком содержании фосфора в руде - и фосфора. Для обыкновенных торговых сортов железа такой чугун с низким содержанием кремния (менее 1 %), под названием передельного, выплавлялся прежде в большом количестве. Древесноугольный чугун, который переделывался на Урале и в центральной России, не содержал серы и давал продукт, шедший и на изготовление кровельного железа. В настоящее время пудлингование служит для производства качественного металла по особым спецификациям, и потому в пудлинговые печи поступает не обыкновенный передельный чугун, а высококачественный, например, марганцовый или «гематит» (малофосфористый), или, наоборот, сильнофосфористый для производства гаечного железа. Ниже указано содержание (в %) главных элементов в некоторых сортах чугуна, применяемых для пудлингования:

Пудлинговая печь по окончании предыдущей операции обыкновенно имеет на поду нормальное количество шлака для работы со следующей садкой. При переработке сильно кремнистого чугуна шлака остается в печи много, и его приходится спускать; наоборот, белый чугун оставляет под печи «сухим», и работу приходится начинать заброской на под нужного количества шлака, который берут из-под молота («спелый», наиболее богатый магнитной окисью). На шлак забрасывается садка чугуна, подогретая в чугуннике (250-300 кг в ординарных и 500-600 кг в двойных печах); затем в топку забрасывают свежую порцию горючего, прочищают колосники, и в печи устанавливается полная тяга. В течение 25-35 мин. чугун плавится, претерпевая б. или м. значительное изменение в своем составе. Твердый чугун окисляется кислородом пламени, причем железо, марганец и кремний дают двойной силикат, стекающий на под печи; плавящийся чугун обнажает все новые и новые слои твердого чугуна, который тоже окисляется и плавится. В конце периода плавления на поду получаются два жидких слоя - чугуна и шлака, на поверхности соприкосновения которых происходит, хотя и в слабой степени, процесс окисления углерода магнитной окисью железа, о чем свидетельствуют выделяющиеся из ванны пузыри окиси углерода. Смотря по содержанию кремния и марганца в чугуне, в расплавленном металле их остается неодинаковое количество: в малокремнистом древесноугольном чугуне или белом - коксовой плавки - кремний в большинстве случаев выгорает при плавлении полностью; иногда же остается некоторое количество его в металле (0,3-0,25%), равно как и марганца. Фосфор тоже окисляется в это время, переходя в фосфорножелезную соль. От уменьшения веса металла при выгорании названных примесей %-ное содержание углерода может даже возрасти, хотя некоторое количество его несомненно сжигается кислородом пламени и шлаков, покрывающих первые порции расплавленного металла.

Для ускорения выгорания оставшихся количеств кремния, марганца и углерода прибегают к пудлингованию, т. е. перемешиванию чугуна со шлаком при помощи клюшки с загнутым под прямым углом концом. Если металл жидок (серый чугун, сильно углеродистый), то перемешивание не достигает цели, и ванну предварительно делают густой забрасыванием в нее холодного спелого шлака или же уменьшением тяги устанавливают в печи неполное горение, сопровождающееся получением сильно коптящего пламени (томление). Через несколько минут, в течение которых производят непрерывно перемешивание, на поверхности ванны появляются обильные пузыри горящей окиси углерода - продукта окисления углерода чугуна кислородом магнитной окиси, растворенной в основном железистом шлаке. По мере хода процесса окисление С усиливается и переходит в бурное «кипение» всей массы металла, которое сопровождается вспучиванием ее и таким значительным увеличением объема, что часть шлака переливается через порог рабочих отверстий. По мере выгорания С повышается температура плавления металла, и для того, чтобы кипение продолжалось, повышают непрерывно температуру в печи. Оконченное при низкой температуре кипение дает сырой товар, т. е. высокоуглеродистую губчатую массу железа, неспособную свариваться; в горячей печи «садится» спелый товар. Процесс окисления примесей железа в пудлинговой печи начинается за счет кислорода шлака, представляющего сплав однокремнеземика железа (Fe 2 SiО 4) с магнитной окисью и закисью железа переменного состава. В английских печах состав смеси окислов выражается формулой 5Fe 3 О 4 ·5 FeО; по окончании кипения отношение окислов в истощенном шлаке выражается формулой Fe 3 О 4 ·5FeО, т. е. в процессе окисления принимает участие 80% всей магнитной окиси шлака. Реакции окисления м. б. представлены следующими термохимическими уравнениями:

Как видно из этих уравнений, окисление Si, Р и Мn сопровождается выделением тепла и, следовательно, нагревает ванну, тогда как окисление С при восстановлении Fe 3 О 4 в FeO поглощает тепло и потому требует высокой температуры. Этим объясняется порядок удаления примесей железа и то, что выгорание углерода заканчивается скорее в горячей печи. Восстановления Fe 3 О 4 до металла не происходит, т. к. для этого требуется более высокая температура, чем та, при которой идет «кипение».

Севший «товар», для того чтобы стать хорошо сваривающимся железом, нуждается еще в пропаривании: товар оставляют на несколько минут в печи и от времени до времени переворачивают ломами, причем нижние его части кладут наверх; под совокупным действием кислорода пламени и шлаков, пропитывающих всю массу железа, углерод в это время продолжает выгорать. Как только получится некоторое количество хорошо сваривающегося металла, из него, избегая лишнего окисления, начинают накатывать крицы. Всего накатывают по мере поспевания товара от 5 до 10 криц (не более 50 кг каждая); крицы выдерживают (пропаривают) у порога в области высшей температуры и подают под молот для обжатия, чем достигается выделение шлака, и придания им формы куска (сечение от 10x10 до 15x15 см), удобной для прокатки в валках. На место выданных криц перемещаются передвижением вперед следующие за ними, до последней. Длительность процесса при производстве металла высшего качества (волокнистое железо) из спелого (высокоуглеродистого) древесноугольного чугуна была на Урале такова: 1) посадка чугуна - 5 мин., 2) плавление - 35 мин., 3) томление - 25 мин., 4) пудлингование (перемешивание) - 20 мин., 5) пропаривание товара - 20 мин., 6) накатка и пропаривание криц - 40 мин., 7) выдача криц (10-11 шт.) - 20 мин.; всего - 165 мин. При работе на белом чугуне, на обычное торговое железо, длительность процесса сокращалась (в 3ападной Европе) до 100 и даже 75 мин.

Что касается результатов работы, то в разных металлургических районах они менялись в зависимости от рода топлива, качества чугуна и сорта производимого железа. Уральские печи, работавшие на дровах, давали выход годного железа на 1 м 3 дров от 0,25 до 0,3 т; расход нефти у нас на единицу железа - 0,3З, каменного угля в европейских печах - от 0,75 до 1,1. Суточная производительность наших больших печей (садка чугуна 600 кг) при работе на сушеных дровах была 4-5 т; выход материала, пригодного для производства кровельного железа, составлял 95-93% количества поступившего в передел чугуна. В Европе суточная производительность обыкновенных печей (садка 250-300 кг) - около 3,5 т при угаре в 9%, а для высококачественного железа - 2,5 т при угаре в 11%.

По химическому составу и физическим свойствам пудлинговое железо является гораздо худшим продуктом, чем кричное, с одной стороны, и литое мартеновское - с другой. Изготовлявшиеся прежде в 3ападной Европе обыкновенные сорта железа содержали много серы и фосфора, т. к. вырабатывались из нечистых коксовых чугунов, а обе эти вредные примеси только частью переходят в шлак; количество шлака в пудлинговом железе - 3-6%, в качественном металле оно не превосходит 2%. Присутствие шлака сильно понижает результаты механических испытаний пудлингового железа. Ниже приведены некоторые данные в %, характеризующие пудлинговое железо - обыкновенное зап.-европейское и хорошее уральское:

Ценным свойством, ради которого и поддерживается теперь производство пудлингового железа, является его прекрасная свариваемость, имеющая иногда особое значение с точки зрения безопасности. Спецификациями ж.-д. обществ предписывается изготовление из пудлингового железа сцепных устройств, тяг для переводных стрелок и болтов. Благодаря лучшему сопротивлению разъедающему действию воды, пудлинговое железо идет также для производства водопроводных труб. Из него же изготовляют гайки (фосфористый крупнозернистый металл) и высококачественное волокнистое железо для заклепок и цепей.

Строение сварочного железа, обнаруживаемое под микроскопом даже при слабом увеличении, характерно присутствием на фотографическом изображении черных и светлых составляющих; первые принадлежат шлаку, а вторые - зернам или волокнам железа, полученным при вытяжке металла.

Железо торговое

Металлургические заводы изготовляют для нужд промышленности железо двух главных видов: 1) листовое и 2) сортовое.

Листовое железо прокатывается в настоящее время до 3 м ширины; при толщине 1-З мм оно называется у нас тонкокатальным; от 3 мм и выше (обычно до 40 мм) - котельным, резервуарным, корабельным, смотря по назначению, которому соответствуют состав и механические свойства материала. Наиболее мягким является котельное железо; оно содержит обыкновенно 0,10-0,12% С, 0,4-0,5% Mn, Р и S - каждого не более 0,05%; временное сопротивление его на разрыв не д. б. больше 41 кг/мм 2 (но и не меньше 34 кг/мм 2), удлинение при разрыве - около 28%. Резервуарное железо выделывается более твердым и прочным; оно содержит 0,12-0,15% С; 0,5-0,7% Мn и не более 0,06% как Р, так и S; сопротивление разрыву 41-49 кг/мм 2 , удлинение 25-28%. Длина листов котельного и резервуарного железа устанавливается заказом сообразно размерам изделия, склепываемого из листов (избегая лишних швов и обрезков), но обыкновенно она не превышает 8 м, так как ограничивается для тонких листов их быстрым охлаждением вовремя процесса прокатки, а для толстых - весом слитка.

Листовое железо менее 1 мм толщины называется черной жестью; оно служит для изготовления белой жести и как кровельный материал. Для последней цели в СССР прокатывают листы размерами 1422x711 мм, весом 4-5 кг, при толщине 0,5-0,625 мм. Кровельное железо выпускается заводами в пачках весом по 82 кг. За границей черная жесть классифицируется в торговле по номерам специального калибра - от 20-го до 30-го (нормальная толщина германской жести от 0,875 до 0,22 мм, а английской - от 1,0 до 0,31 мм). Жесть изготовляется из самого мягкого литого железа, содержащего 0,08- 0,10% С, 0,3-0,35% Мn, если оно изготовляется из чугуна древесноугольной плавки (у нас), и 0,4-0,5% Мn, если исходным материалом служат коксовый чугун; сопротивление разрыву - от 31 до 34 кг/мм 2 , удлинение - 28-30%. Разновидностью листового железа является волнистое (гофрированное) железо. Оно разделяется по характеру волн на железо с низкими и высокими волнами; в первом - отношение ширины волны к глубине колеблется от 3 до 4, во втором 1-2. Волнистое железо делают толщиной 0,75-2,0 мм и шириной листов 0,72-0,81 м (с низкими волнами) и 0,4-0,6 м (с высокими волнами). Волнистое железо употребляется для кровель, стен легких сооружений, жалюзи, а с высокими волнами, кроме того, идет для постройки бесстропильных перекрытий.

Сортовое железо делится по форме поперечного сечения на два класса: обыкновенное сортовое железо и фасонное.

К первому классу относится железо круглое (при диаметре менее 10 мм называемое проволокой), квадратное, плоское или полосовое. Последнее, в свою очередь, делится на: собственно полосовое - шириной от 10 до 200 мм и толщиной более 5 мм; обручное - той же ширины, но толщиной от 5 до 1 мм, указываемой № калибра (от 3-го до 19-го нормального германского и от 6-го до 20-го нового английского калибра); шинное - от 38 до 51 мм шириной и до 22 мм толщиной; универсальное - от 200 до 1000 мм шириной и не менее 6 мм толщиной (прокатывается в особых валках - универсальных). Как шинное, так и обручное железо выпускается заводами скатами, катаная проволока - мотками; остальные сорта - в виде прямых (правленных) полос, обычно не более 8 м длиной (нормально - от 4,5 до 6 м), но по специальному заказу для бетонных конструкций полосы нарезаются до 18 мм длиной, а иногда и более.

Главнейшие виды фасонного железа: угловое (равнобокое и неравнобокое), коробчатое (швеллерное), тавровое, двутавровое (балки), колонное (квадратное) и зетовое железо; существуют также и некоторые другие менее распространенные виды фасонного железа. По нашему нормальному метрическому сортименту размеры фасонного железа указываются № профиля (№ - число см. ширины полки или наибольшей высоты профиля). Угловое неравнобокое и тавровое железо имеют двойной №; напр., № 16/8 означает угловое с полками в 16 и 8 см или тавровое с полкой в 16 см и высотой тавра 8 см. Наиболее тяжелые профили катаемого у нас фасонного железа: № 15 - углового, № 30 - корытного, № 40 - двутаврового.

Состав обыкновенного сваривающегося сортового железа: 0,12% С, 0,4% Мn, менее 0,05% Р и S - каждого; сопротивление его разрыву 34-40 кг/мм 2 ; но круглое железо для заклепок изготовляется из более мягкого материала состава: менее 0,10% С, 0,25- 0,35% Мn, около 0,03% Р и S - каждого. Сопротивление разрыву 32-35 кг/мм 2 , а удлинение 28-32%. Фасонное не свариваемое, а склепываемое железо («строительная сталь») содержит: 0,15 - 0,20% С, 0,5% Мn, до 0,06% Р и S - каждого; его сопротивление разрыву 40-50 кг/мм 2 , удлинение 25-20%. Для производства гаек изготовляется железо (томасовское), содержащее около 0,1% С, но от 0,3 до 0,5% Р (чем крупнее гайки, тем больше Р). За границей для удовлетворения нужд специальных прокатных заводов в торговле обращается полупродукт - квадратная заготовка, обыкновенно 50 х 50 мм в поперечном сечении.

Качественные реакции на железо (III)

Ионыжелеза (III ) в растворе можно определить с помощью качественных реакций. Проведем некоторые из них. Возьмем для опыта раствор хлорида железа (III ).

1. III )– реакция со щелочью.

Если в растворе есть ионы железа (III ), образуется гидроксид железа (III ) Fe(OH) 3 . Основание нерастворимо в воде и бурого цвета. (Гидроксид железа (II ) Fe(OH) 2 . – также нерастворим, но серо-зеленого цвета). Бурый осадок указывает на присутствие в исходном растворе ионов железа (III ).

FeCl 3 + 3 NaOH = Fe(OH) 3 ↓+ 3 NaCl

2. Качественная реакция на ион железа ( III ) – реакция с желтой кровяной солью.

Желтая кровяная соль – это гексацианоферраткалия K 4 [ Fe ( CN ) 6 ]. (Для определения железа (II ) используют красную кровяную соль K 3 [ Fe ( CN ) 6 ]). К порции раствора хлорида железаприльемраствор желтой кровяной соли. Синий осадок берлинской лазури* показывает на присутствие в исходном растворе ионов трехвалентного железа.

3 К 4 +4 FeCl 3 = K Fe ) ↓ + 12 KCl

3. Качественная реакция на ион железа ( III ) – реакция с роданидом калия.

Вначале разбавляем испытуемый раствор – иначе не увидим ожидаемой окраски. В присутствии иона железа (III ) при добавлении роданида калия образуется вещество красного цвета. Это ‑ роданид железа (III ). Роданид от греческого "родеос" - красный.

FeCl 3 + 3 К CNS = Fe ( CNS ) 3 + 3 KCl

Берлинская лазурь была получена случайно в начале 18 века в Берлине красильных дел мастером Дисбахом. Дисбах купил у торговца необычный поташ (карбонат калия): раствор этого поташа при добавлении солей железа получался синим. При проверке поташа оказалось, что он был прокаленс бычьей кровью. Краска оказалась подходящей для тканей: яркой, устойчивой и недорогой. Вскоре стал известен и рецепт получения краски: поташ сплавляли с высушенной кровью животных и железными опилками. Выщелачиванием такого сплава получали желтую кровяную соль. Сейчас берлинскую лазурь используют для получения печатной краски и подкрашивания полимеров.

Оборудование: колбы, пипетка.

Техника безопасности . Соблюдать правила обращения с растворами щелочей и растворами гексацианоферратов. Не допускать контакта растворов гексацианоферратов с концентрированными кислотами.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Желе́зо - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.

Основные степени окисления — +2, +3

Простое вещество железо - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Химические свойства простого вещества — железа:

Ржавление и горение в кислороде

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O 2 + 6H 2 O → 4Fe(OH) 3

Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):

3Fe + 2O 2 → Fe 3 O 4

3Fe+2O 2 →(Fe II Fe 2 III)O 4 (160 °С)

2) При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H 2 O – t° → Fe 3 O 4 + 4H 2 ­

3) Железо реагирует с неметаллами при нагревании:

2Fe+3Cl 2 →2FeCl 3 (200 °С)

Fe + S – t° → FeS (600 °С)

Fe+2S → Fe +2 (S 2 -1) (700°С)

4) В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н 2 SO 4 , при этом образуются соли железа(II) и выделяется водород:

Fe + 2HCl → FeCl 2 + H 2 ­ (реакции проводятся без доступа воздуха, иначе Fe +2 постепенно переводится кислородом в Fe +3)

Fe + H 2 SO 4 (разб.) → FeSO 4 + H 2 ­

В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе 3+ :

2Fe + 6H 2 SO 4 (конц.) – t° → Fe 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O

Fe + 6HNO 3 (конц.) – t° → Fe(NO 3) 3 + 3NO 2 ­ + 3H 2 O

(на холоде концентрированные азотная и серная кислоты пассивируют

Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди

5) Железо вытесняет металлы, стоящие правее его в из растворов их солей.

Fe + CuSO 4 → FeSO 4 + Cu

Амфотерность железа проявляется только в концентрированных щелочах при кипячении:

Fе + 2NaОН (50 %) + 2Н 2 O= Nа 2 ↓+ Н 2

и образуется осадок тетрагидроксоферрата(II) натрия.

Техническое железо - сплавы железа с углеродом: чугун содержит 2,06-6,67 % С, сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.

Доменный процесс производства чугуна

Доменный процесс производства чугуна составляют следующие стадии:

а) подготовка (обжиг) сульфидных и карбонатных руд - перевод в оксидную руду:

FeS 2 →Fe 2 O 3 (O 2 ,800°С, -SO 2) FeCO 3 →Fe 2 O 3 (O 2 ,500-600°С, -CO 2)

б) сжигание кокса при горячем дутье:

С (кокс) + O 2 (воздух) →СO 2 (600-700°С) СO 2 + С (кокс) ⇌ 2СО (700-1000 °С)

в) восстановление оксидной руды угарным газом СО последовательно:

Fe 2 O 3 →(CO) (Fe II Fe 2 III)O 4 →(CO) FeO→(CO) Fe

г) науглероживание железа (до 6,67 % С) и расплавление чугуна:

Fе (т) →(C (кокс) 900-1200°С) Fе (ж) (чугун, t пл 1145°С)

В чугуне всегда в виде зерен присутствуют цементит Fe 2 С и графит.

Производство стали

Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (СО 2 , SО 2), либо связываются в легко отделяемый шлак — смесь Са 3 (РO 4) 2 и СаSiO 3 . Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Получение чистого железа в промышленности — электролиз раствора солей железа, например:

FеСl 2 → Fе↓ + Сl 2 (90°С) (электролиз)

(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).

Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь - как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.

Оксид железа(II) F еО . Амфотерный оксид с большим преобладанием основных свойств. Черный, имеет ионное строение Fе 2+ O 2- . При нагревании вначале разлагается, затем образуется вновь. Не образуется при сгорании железа на воздухе. Не реагирует с водой. Разлагается кислотами, сплавляется со щелочами. Медленно окисляется во влажном воздухе. Восстанавливается водородом, коксом. Участвует в доменном процессе выплавки чугуна. Применяется как компонент керамики и минеральных красок. Уравнения важнейших реакций:

4FеО ⇌(Fe II Fe 2 III) + Fе (560-700 °С, 900-1000°С)

FеО + 2НС1 (разб.) = FеС1 2 + Н 2 O

FеО + 4НNO 3 (конц.) = Fе(NO 3) 3 +NO 2 + 2Н 2 O

FеО + 4NаОН =2Н 2 O + N а 4 F е O 3(красн .) триоксоферрат(II) (400-500 °С)

FеО + Н 2 =Н 2 O + Fе (особо чистое) (350°С)

FеО + С (кокс) = Fе + СО (выше 1000 °С)

FеО + СО = Fе + СO 2 (900°С)

4FеО + 2Н 2 O (влага) + O 2 (воздух) →4FеО(ОН) (t)

6FеО + O 2 = 2(Fe II Fe 2 III)O 4 (300-500°С)

Получение в лаборатории : термическое разложение соединений железа (II) без доступа воздуха:

Fе(ОН) 2 = FеО + Н 2 O (150-200 °С)

FеСОз = FеО + СO 2 (490-550 °С)

Оксид дижелеза (III) – железа( II ) ( Fe II Fe 2 III)O 4 . Двойной оксид. Черный, имеет ионное строение Fe 2+ (Fе 3+) 2 (O 2-) 4 . Термически устойчив до высоких температур. Не реагирует с водой. Разлагается кислотами. Восстанавливается водородом, раскаленным железом. Участвует в доменном процессе производства чугуна. Применяется как компонент минеральных красок (железный сурик ), керамики, цветного цемента. Продукт специального окисления поверхности стальных изделий (чернение, воронение ). По составу отвечает коричневой ржавчине и темной окалине на железе. Применение брутто-формулы Fe 3 O 4 не рекомендуется. Уравнения важнейших реакций:

2(Fe II Fe 2 III)O 4 = 6FеО + O 2 (выше 1538 °С)

(Fe II Fe 2 III)O 4 + 8НС1 (разб.) = FеС1 2 + 2FеС1 3 + 4Н 2 O

(Fe II Fe 2 III)O 4 +10НNO 3 (конц.) =3Fе(NO 3) 3 + NO 2 + 5Н 2 O

(Fe II Fe 2 III)O 4 + O 2 (воздух) = 6Fе 2 O 3 (450-600°С)

(Fe II Fe 2 III)O 4 + 4Н 2 = 4Н 2 O + 3Fе (особо чистое, 1000 °С)

(Fe II Fe 2 III)O 4 + СО =ЗFеО + СO 2 (500-800°C)

(Fe II Fe 2 III)O4 + Fе ⇌4FеО (900-1000 °С, 560-700 °С)

Получение: сгорание железа (см.) на воздухе.

магнетит.

Оксид железа(III) F е 2 О 3 . Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+) 2 (O 2-) 3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе. Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе 2 O 3 nН 2 О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами). Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.

Уравнения важнейших реакций:

6Fе 2 O 3 = 4(Fe II Fe 2 III)O 4 +O 2 (1200-1300 °С)

Fе 2 O 3 + 6НС1 (разб.) →2FеС1 3 + ЗН 2 O (t) (600°С,р)

Fе 2 O 3 + 2NaОН (конц.) →Н 2 O+ 2 N а F е O 2 (красн.) диоксоферрат(III)

Fе 2 О 3 + МО=(М II Fе 2 II I)O 4 (М=Сu, Мn, Fе, Ni, Zn)

Fе 2 O 3 + ЗН 2 =ЗН 2 O+ 2Fе (особо чистое, 1050-1100 °С)

Fе 2 O 3 + Fе = ЗFеО (900 °С)

3Fе 2 O 3 + СО = 2(Fe II Fе 2 III)O 4 + СO 2 (400-600 °С)

Получение в лаборатории — термическое разложение солей железа (III) на воздухе:

Fе 2 (SO 4) 3 = Fе 2 O 3 + 3SO 3 (500-700 °С)

4{Fе(NO 3) 3 9 Н 2 O} = 2Fе a O 3 + 12NO 2 + 3O 2 + 36Н 2 O (600-700 °С)

В природе — оксидные руды железа гематит Fе 2 O 3 и лимонит Fе 2 O 3 nН 2 O

Гидроксид железа (II) F е(ОН) 2 . Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив. Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа. Применяется в изготовлении активной массы железоникелевых аккумуляторов.

Уравнения важнейших реакций:

Fе(OН) 2 = FеО + Н 2 O (150-200 °С, в атм.N 2)

Fе(ОН) 2 + 2НС1 (разб.) =FеС1 2 + 2Н 2 O

Fе(ОН) 2 + 2NаОН (> 50%) = Nа 2 ↓ (сине-зеленый) (кипячение)

4Fе(ОН) 2 (суспензия) + O 2 (воздух) →4FеО(ОН)↓ + 2Н 2 O (t)

2Fе(ОН) 2 (суспензия) +Н 2 O 2 (разб.) = 2FеО(ОН)↓ + 2Н 2 O

Fе(ОН) 2 + КNO 3 (конц.) = FеО(ОН)↓ + NO+ КОН (60 °С)

Получение : осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:

Fе 2+ + 2OH (разб.) = F е(ОН) 2 ↓

Fе 2+ + 2(NH 3 Н 2 O) = F е(ОН) 2 ↓ + 2NH 4

Метагидроксид железа F еО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде. Осаждается из раствора в виде бурого аморфного полигидрата Fе 2 O 3 nН 2 O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН) 2 . Промежуточный продукт при ржавлении железа. Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.

Соединение состава Fе(ОН) 3 не известно (не получено).

Уравнения важнейших реакций:

Fе 2 O 3 . nН 2 O→(200-250 °С, — H 2 O ) FеО(ОН)→(560-700° С на воздухе, -H2O) →Fе 2 О 3

FеО(ОН) + ЗНС1 (разб.) =FеС1 3 + 2Н 2 O

FeO(OH)→Fe 2 O 3 . nH 2 O -коллоид (NаОН (конц.))

FеО(ОН)→N а 3 [ F е(ОН) 6 ] белый , Nа 5 и К 4 соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFе III . В лаборатории этот осадок называют берлинская лазурь , или турнбуллева синь :

Fе 2+ + К + + 3- = КFе III ↓

Fе 3+ + К + + 4- = КFе III ↓

Химические названия исходных реактивов и продукта реакций:

К 3 Fе III - гексацианоферрат (III) калия

К 4 Fе III - гексацианоферрат (II) калия

КFе III - гексацианоферрат (II) железа (Ш) калия

Кроме того, хорошим реактивом на ионы Fе 3+ является тиоцианат-ион NСS — , железо (III) соединяется с ним, и появляется ярко-красная («кровавая») окраска:

Fе 3+ + 6NСS — = 3-

Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.

Класс: 9

Задачи урока:

Образовательная: познакомить учащихся с природными соединениями железа, рассмотреть важнейшие соединения железа (+2) и (+3), их свойства, ознакомить с качественными реакциями на ионы железа (+2) и (+3), показать народнохозяйственное значение соединений железа;

Развивающая: развитие речи, памяти, логического мышления, умений совместной деятельности; развитие и закрепление умений и навыков работать с лабораторным оборудованием;

Воспитательная: формирование мировоззрения, навыков сотрудничества, преемственности знаний, осуществление межпредметных связей, воспитание экологической грамотности, разумного отношения к природе (слайд 2).

Оборудование и реактивы:

образцы природных соединений железа (магнитный железняк, красный железняк, бурый железняк, железный колчедан); растворы хлорида железа (II) и (III), растворы красной кровяной соли и жёлтой кровяной соли, раствор роданида калия, раствор щёлочи; соли: железный купорос, хлорид железа (III), сульфат железа (III), необходимая химическая посуда.

Тип урока: комбинированный.

Ход урока

I. Организационный момент.

II. Актуализация знаний.

1 вариант

1) Fe + H 2 SO 4р-р =

3) Fe + AgNO 3 =

2 вариант

Закончите уравнения реакций. Уравнение №2 рассмотрите с точки зрения ОВР.

3 вариант

Закончите уравнения реакций. Уравнение №2 рассмотрите с точки зрения ОВР.

3) Fe + Cu(NO 3) 2 =

III. Изучение нового материала.

Нахождение железа в природе

Железо (5%) – второй по распространённости металл в земной коре, а в природе занимает 4 место. В природе встречается в виде оксидов и сульфидов:

Fe 3 O 4 – магнитный железняк (магнетит);

Fe 2 O 3 – красный железняк (гематит);

(Врач и алхимик Теофаст Парацельс много путешествовал и в 1530г из России привёз в свою лабораторию в г. Базеле кусок вишнёво – красного минерала – “кровавика”. Минерал действительно оставлял “кровавый” след – красную черту на пергаменте или белом камне. Помощник Парацельса, невежественный монах, решил, что минерал из России – застывшая кровь дьявола. Готовя составные части лекарств прокаливанием солей, полученных из “русского минерала”, монах всякий раз получал порошок красного цвета. Сиреневые кристаллы сульфата и нитрата железа (III), жёлтый хлорид железа (III) или почти белый карбонат железа (II) – все они при нагревании в токе воздуха превращались в “кровавик”. Бросив работу, монах стал повсюду рассказывать, что Парацельс связан с дьяволом. В адрес знаменитого врача посыпались угрозы, и ночью ему пришлось тайно покинуть Базель. Утром толпа горожан разгромила и сожгла его дом).

“Кровавик” - это минерал гематит Fe 2 O 3 . Соли железа при прокаливании разлагаются с выделением этого оксида красного цвета.)

2Fe 2 O 3 *3H 2 O – бурый железняк (лимонит);

FeS 2 – железный колчедан (пирит).

Помимо железа в состав этих минералов входят другие элементы. Природное химически чистое железо бывает только метеоритного происхождения (самый большой метеорит найден в 1920 г. в Юго – Западной Африке, вес 60 т., “Гоба”) (демонстрация коллекции минералов) (Cлайд 3).

Железо образует несколько рядов соединений, чтобы узнать какие мы должны с вами вспомнить, какова особенность строения атома железа и какие степени окисления характерны для железа?

Fe +26 2е, 8е, 14е, 2е

(Fe – элемент 7 группы побочной подгруппы, 4 периода (большой). Заполняется не последний, а предпоследний, 3-й от ядра энергетический уровень, где максимальное число электронов 18, у железа здесь 14 электронов. Железо восстановитель, как и другие металлы, однако в отличие от ранее изученных металлов, атомы железа при окислении отдают не только электроны последнего уровня, приобретая степень окисления +2, но способны к отдаче 1 электрона с предпоследнего энергетического уровня, принимая при этом степень окисления +3. Для железа характерны две основные степени окисления +2 и +3).

Проявляя степени окисления +2 и +3 железо образует 2 ряда соединений.

Соединения железа (+2).

Соединения железа (+2): FeO (оксид железа(II) и Fe(OH) 2 (гидроксид железа(II). Имеют ярко выраженный основный характер. Получают их косвенно. Рассмотрим генетический ряд Fe +2:

Соединения железа (+3).

Соединения железа (+3): Fe 2 О 3 (оксид железа(III)) и Fe(OH) 3 (гидроксид железа(III)). Имеют слабо выраженные амфотерные свойства. Получают их косвенно. Рассмотрим генетический ряд Fe +3:

Катионы железа (+2) легко окисляются кислородом воздуха или другими окислителями до катионов железа (+3). Поэтому белый осадок Fe(OH) 2 (гидроксид железа(II) на воздухе сначала приобретает зелёную окраску, а затем становится бурым, превращаясь в Fe(OH) 3 (гидроксид железа(III) (демонстрационный опыт

)

Соли железа (+2) и (+3).

Железо образует 2 ряда солей Fe +2 и Fe +3 . Для распознавания соединений железа (+2) и (+3) проводят качественные реакции на данные ионы (качественные реакции – это реакции с помощью которых распознают различные вещества, они сопровождаются ярким внешним эффектом).

Качественные реакции на Fe +2 .

Реактивом служит красная кровяная соль.

Качественные реакции на Fe +3.

Реактивом служит жёлтая кровяная соль.

Также для обнаружения ионов железа(III) используют взаимодействие солей железа(III) с роданидом калия или аммония, в результате чего раствор приобретает интенсивно-красное окрашивание.

Техника безопасности: необходимо брать вещества в количествах указанных учителем; при попадании данных химических реактивов на кожу или одежду необходимо смыть реактивы избытком воды; если что-нибудь попало в глаза – промыть водой в течение 10-15 минут.

(просмотр диска; демонстрация образцов солей; опыты учащихся) (Cлайд 4, 5).

Применение соединений железа

Железо выполняет функции кроветворных органов, входит в состав гемоглобина, других сложных белковых животных организмов. В виде чугуна и стали железо находит широкое применение в народном хозяйстве. Из солей железа наибольшее техническое значение имеют сульфаты и хлориды.

FeSO 4 *7H 2 O – железный купорос используется для борьбы с вредителями растений, для приготовления минеральных красок и т.д.;

FeCl 3 – используется как протрава при крашении тканей и в качестве катализатора в органическом синтезе;

Fe 2 (SO 4) 3 *9H 2 O – применяют для очистки воды, в виде квасцов в медицине.

(просмотр диска; демонстрация образцов солей)

На уроке мы с вами рассмотрели соединения железа (+2) и (+3). Познакомились с нахождением железа в природе: минералы магнетит, гематит, лимонит, пирит. Изучили соединения железа (+2) (FeO (оксид железа(II) и Fe(OH) 2 (гидроксид железа(II) и их свойства; соединения железа (+3) (Fe 2 О 3 (оксид железа(III) и Fe(OH) 3 (гидроксид железа(III), их свойства. Рассмотрели лёгкость окисления Fe +2 в Fe +3 кислородом воздуха. Узнали, что железо образует 2 ряда соединений:

Fe +2: реактивом служит красная кровяная соль, образуется тёмно-синий осадок (турнбулева синь);

Fe +3: реактивом служит

1) жёлтая кровяная соль, образуется тёмно-синее окрашивание (берлинская лазурь);

2) роданид калия или аммония, образуется интенсивно-красное окрашивание.

Рассмотрели применение соединений железа: в металлургии, медицине, при очистке воды, при окраске тканей, для борьбы с вредителями и в других отраслях народного хозяйства.

V. Закрепление.

Задача. Какая масса железа может быть получена при действии на 96 г оксида железа(III) избытка оксида углерода(II), если выход реакции составляет 80% от теоретически возможного? (Cлайд 6)

VI. Рефлексия.

Закончите предложения или дайте ответ на поставленный вопрос.

Мне больше всего понравилось…

Сегодня я узнал…

Было сложно…

Было интересно…

Теперь я могу…

Я попробовал…

Домашнее задание: учебник Габриелян О. С. п.14 (стр. 65-67); упр. 5,6 письменно (Cлайд 7).