Общая характеристика р-элементов VIА-группы. Халькогены. Элементы viа группы

Селен и теллур находятся в VI группе периодической системы и являются аналогами серы. На внешнем электронном уровне у селена и теллура находятся по 6 электронов: Se 4s 2 4p 4 ; Te 5s 2 5p 4 , поэтому они проявляют степени окисления IV, VI и -II. Как и в любой группе периодической системы по мере роста атомной массы элемента, кислотные свойства элемента ослабевают, а основные возрастают, поэтому у теллура проявляется целый ряд основных (металлических свойств) и не удивительно, что первооткрыватели приняли его за металл.

Для селена характерен полиморфизм, существуют 3 кристаллические и 2 аморфные модификации.

Стекловидный селен получается быстрым охлажденным расплавленного селена, состоит из кольцевых молекул Se 8 и колец до 1000 атомов.

Красный аморфный селен образуется, если быстро охлаждать пары Se, в основном состоит из неправильно ориентированных молекул Se 8 , он растворяется в СS 2 при кристаллизации получают две кристаллические модификации:

t пл 170 0 С t пл 180 0 C

медленной быстрой

построенны из молекул Se 8 .

Наиболее устойчив серый гексагональный селен , состоящий из бесконечных цепей атомов селена. При нагревании все модификации переходят в последнюю. Это единственная полупроводниковая модификация. Она имеет: t пл 221 0 С и t кип 685 0 С. В парах наряду с Se 8 присутствуют и молекулы с меньшим числом атомов вплоть до Se 2 .

У теллура все более просто - наиболее устойчив гексагональный теллур, с t пл 452 0 С и t кип 993 0 С. Аморфный теллур – это мелкодисперсный гексагональный теллур.

Селен и теллур устойчивы на воздухе, при нагревании горят, образуя диоксиды SeO 2 и TeO 2 . При комнатной температуре не реагируют с водой.

При нагревании аморфного селена до t 60 0 С, начинает реагировать с водой:

3Se + 3Н 2 О = 2Н 2 Se + Н 2 SeО 3 (17)

Teллур менее активен и реагирует с водой выше 100 0 С. Со щелочами реагируют при более мягких условиях, образуя:

3Se + 6NaOH = 2Na 2 Se + Na 2 SeO 3 + 3H 2 O (18)

3Te + 6NaOH = 2Na 2 Te + Na 2 TeO 3 + 3H 2 O (19)

C кислотами (НСl и разбавленой H 2 SO 4) не реагируют, разбавленная HNO 3 окисляет их до H 2 SeO 3 ; H 2 TeO 3 , если кислота концентрированная, то она окисляет теллур до основного нитрата Te 2 O 3 (OH)NO 3 .

Концентрированная H 2 SO 4 растворяет селен и теллур, образуя

Se 8 (HSO 4) 2 – зеленые H 2 SeO 3

Te 4 (HSO 4) 2 – красные Te 2 O 3 SO 4

½ растворы

малоустойчивы

выделяются Se и Te

Для Se как и для S характерны реакции присоединения:

Na 2 S + 4Se = Na 2 SSe 4 (наиболее устойчивы) (20)

Na 2 S + 2Тe = Na 2 SТe 2 (наиболее устойчивы) (21)

в общем случае Na 2 SЭ n , где Э = Se, Te.

Na 2 SO 3 + Se Na 2 SeSO 3 (22)

селеносульфат

Для теллура такая реакция происходит только в автоклавах.

Se + KCN = KSeCN (для теллура неизвестна) (23)

С водородом селен взаимодействует при температуре 200 0 С:

Se + H 2 = H 2 Se (24)

Для теллура реакция протекает с трудом и выход теллуроводорода мал.

Селен и теллур взаимодействуют с большинством металлов. В соединениях для селена и теллура характерны степени окисления -2, +4, известны и +6.

Соединения с кислородом.Диоксиды. SeO 2 – белый, t возг. – 337 0 С, растворяется в воде, образуя H 2 SeO 3 – нестойкая, при температуре 72 0 С разлагается по перетектической реакции.

ТеО 2 – более тугоплавок, t пл. – 733 0 С, t кип. – 1260 0 С, не летуч, мало растворим в воде, легко растворяется в щелочах, минимум растворимости приходится на рН ~ 4, из раствора выделяется осадок H 2 TeO 3 , нестойка и при высушивании распадается.

Триоксиды. Высшие оксиды получаются при действии сильных окислителей.

SeO 3 (напоминает SO 3) реагирует с водой, образуя H 2 SeO 4 , t пл. ~ 60 0 С, сильный окислитель, растворяет Au:

2Au + 6H 2 SeO 4 = Au 2 (SeO 4) 3 + 3H 2 SeO 3 + 3H 2 O (25)

в смеси с НCl растворяет Pt.

ТeO 3 – малоактивное вещество, существует в аморфной и кристаллической модификациях. Аморфный триоксид при длительном воздействии горячей воды гидратируется, переходя в орто-теллуровую кислоту H 6 TeO 6 . Растворяется в концентрированных растворах щелочей при нагревании, образуя теллураты.

H 2 TeO 4 имеет три разновидности: орто-теллуровая кислота H 6 TeO 6 хорошо растворима в H 2 O, ее растворы не дают кислую реакцию, очень слабая кислота, при обезвоживании получается полиметателлуровая кислота (H 2 TeO 4) n нерастворимая в воде. Аллотеллуровая кислота получается нагреванием орто-теллуровой кислоты в запаянной ампуле, смешивается с водой в любых отношениях и имеет кислый характер. Является промежуточной, в цепи 6 – 10 молекул, нестойкая, при комнатной температуре переходит в орто-теллуровую кислоту, а при нагревании на воздухе быстро превращается в H 2 TeO 4 .

Соли. Для селенатов соли тяжелых металлов хорошо растворимы в воде, мало растворимы селенаты ЩЗМ, свинца и в отличие от сульфатов, Ag и Tl. При нагревании образуют селениты (отличие от сульфатов). Селениты более устойчивы, чем сульфиты, их можно расплавить в отличие от сульфитов.

Теллураты Na 2 H 4 TeO 6 – ортотеллурат существует в двух модификациях, полученный при низких температурах, растворим в воде, при высоких – не растворим. При обезвоживании получается Na 2 TeO 4 не растворимый в воде. Малой растворимостью отличаются теллураты тяжелых и ЩЗМ. В отличие от теллурата, теллурит натрия растворим в воде.

Гидриды. Н 2 Se и Н 2 Тe газы, растворяются в воде и дают более сильные кислоты, чем H 2 S. При нейтрализации щелочами образуют соли, аналогичные Na 2 S. Для теллуридов и селенидов, как и для Na 2 S, характерны реакции присоединения:

Na 2 Se + Se = Na 2 Se 2 (26)

Na 2 Se + nS = Na 2 SeS n (27)

В общем случае образуются Na 2 ЭS 3 и Na 2 ЭS 4 , где Э – селен и теллур.

Хлориды. Если для серы наиболее устойчив S 2 Cl 2 , то для селена подобное соединение известно, однако наиболее устойчив SeCl 4 , для теллура ТeCl 4 . При растворении в воде SeCl 4 гидролизируется:

SeCl 4 + 3H 2 O = 4НCl + H 2 SeO 3 (28)

ТeCl 4 растворяется без заметного гидролиза.

Для ТeCl 4 известны комплексы: K 2 TeCl 6 и KTeCl 5 , с хлоридом алюминия образует катионные комплексы + - . В некоторых случаях образует комплексы и селен, но для него известны лишь гексахлорселенаты: M 2 SeCl 6 .

При нагревании возгоняются и диссоциируют:

SeCl 4 = SeCl 2 + Cl 2 (29)

при конденсации диспропорционируют:

2ТeCl 2 = Те + TeCl 4 (30)

Известны фториды, бромиды, иодиды образуются только у теллура.

Сульфиды. При сплавлении с серой соединений не образуется. При действии H 2 S на соли селена и теллура можно осадить TeS 2 и смесь SeS 2 и SeS (считают, что это смесь S и Se).

Синтезом, путем замещения в молекуле S 8 серы на селен, получены Se 4 S 4 , Se 3 S 5 , Se 2 S 6 , SeS 7 , замещение происходит через один атом серы.

Подгруппа кислорода, или халькогенов – 6-я группа периодической системы Д.И. Менделле-ва, включающая следующие элементы: О;S;Se;Te;Po.Номер группы указывает на максимальную валентность элементов, стоящих в этой группе. Общая электронная формула халькогенов: ns2np4– на внешнем валентном уровне у всех элементов имеется 6 электронов, которые редко отдают и чаще принимают 2 недостающих до завершения уровня электрона. Наличие одинакового валентного уровня обуславливает химическое сходство халькогенов. Характерные степени окисления: -1; -2; 0; +1; +2; +4; +6. Кислород проявляет только -1 – в пероксидах; -2 – в оксидах; 0 – в свободном состоянии; +1 и +2 – во фторидах – О2F2, ОF2 т. к. у него нет d-под-уровня и электроны разъединяться не могут, и валентность всегда – 2; S – все, кроме +1 и -1. У серы появляется d-подуровень и электроны с 3р и с 3s в возбужденном состоянии могут разъединиться и уйти на d-подуровень. В невозбужденном состоянии валентность серы – 2 – в SО, 4 – в SО2, 6 – в SО3. Se +2; +4; +6, Te +4; +6, Po +2; -2. Валентности у селена, теллура и полония также 2, 4, 6. Значения степеней окисления отражены в электронном строении элементов: О – 2s22p4; S – 3s23p4; Se – 4s24p4; Te – 5s25p4; Po – 6s26p4. Сверху вниз, с нарастанием внешнего энергетического уровня закономерно изменяются физические и химические свойства халькогенов: радиус атома элементов увеличивается, энергия ионизации и сродства к электрону, а также электроотрицательность уменьшаются; уменьшаются неметаллические свойства, металлические увеличиваются (кислород, сера, селен, теллур – неметаллы), у полония имеется металлический блеск и электропроводимость. Водородные соединения халькогенов соответствуют формуле: H2R: H2О, H2S, H2Sе, H2Те – хальководороды. Водород в этих соединениях может быть замещен на ионы металлов. Степень окисления всех халькогенов в соединении с водородом -2 и валентность тоже 2. При растворении хальководородов в воде образуются соответствующие кислоты. Эти кислоты – восстановители. Сила этих кислот сверху вниз возрастает, т. к. уменьшается энергия связи и способствует активной диссоциации. Кислородные соединения халькогенов отвечают формуле: RО2 и RО3 – кислотные оксиды. При растворении этих оксидов в воде они образуют соответствующие кислоты: Н2RО3 и Н2RO4. В направлении сверху вниз сила этих кислот убывает. Н2RО3 – кислоты-восстановители, Н2RO4 – окислители.

Кислород - самый распространенный элемент на Земле. Он составляет 47,0% от массы земной коры. Его содержание в воздухе оставляет 20,95% по объему или 23,10% по массе. Кислород входит в состав воды, горных пород, многих минералов, солей, содержится в белках, жирах и углеводах, из которых состоят живые организмы.В лабораторных условиях кислород получают: - разложением при нагревании бертолетовой соли (хлората калия) в присутствии катализатора MnO2:2KClO3 = 2KCl+3O2 -разложением при нагревании перманганата калия:2KMnO4=K2MnO4+MnO2+O2 При этом получается очень чистый кислород.можно также получить кислород электролизом водного раствора гидроксида натрия (электроды никелевые);Основным источником промышленного получения кислорода является воздух, который сжижают и затем фракционируют. Вначале выделяется азот (tкип=-195°C), а в жидком состоянии остается почти чистый кислород, так как его температура кипения выше (-183°С). Широко распространен способ получения кислорода, основанный на электролизе воды.В нормальных условиях кислород - газ без цвета, вкуса и запаха, немного тяжелее воздуха. В воде мало растворим (в 1 л воды при 20°С растворяется 31 мл кислорода). При температуре -183°С и давлении 101,325 кПа кислород переходит в жидкое состояние. Жидкий кислород имеет голубоватый цвет и втягивается в магнитное поле.Природный кислород содержит три стабильных изотопа 168O (99,76%), 178О (0,04%) и 188О (0,20%). Искусственным способом получены три нестабильных изотопа - 148О, 158О, 198О.Для завершения внешнего электронного уровня атому кислорода не хватает двух электронов. Энергично принимая их, кислород проявляет степень окисления -2. Однако в соединениях со фтором (OF2 и O2F2) общие электронные пары смещены ко фтору, как к более электроотрицательному элементу. В этом случае степени окисления кислорода соответственно равны +2 и +1, а фтора -1.Молекула кислорода состоит из двух атомов О2. Химическая связь ковалентная неполярная.Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно, кроме галогенов, золота и платины. Скорость реакции кислорода как с простыми, так и со сложными веществами зависит от природы веществ, температуры и других условий. Такой активный металл, как цезий, самовозгорается в кислороде воздуха уже при комнатной температуре.С фосфором кислород активно реагирует при нагревании до 60°С, с серой - до 250°С, с водородом - более 300°С, с углеродом (в виде угля и графита) - при 700-800°С.4Р+5О2=2Р2О52Н2+O2=2Н2О S+O2=SO2 С+O2=СO2При горении сложных веществ в избытке кислорода образуются оксиды соответствующих элементов: 2H2S+3O2=2S02+2H2OC2H5OH+3O2=2CO2+3H2OCH4+2O2=CO2+2H20 4FeS2+11O2=2Fe2O3+8SO2 Рассмотренные реакции сопровождаются выделением как теплоты, так и света. Такие процессы с участием кислорода называют горением. Поотносительной электроотрицательности кислород является вторым элементом. Поэтому в химических реакциях как с простыми, так и со сложными веществами он является окислителем, т.к. принимает электроны. Горение, ржавление, гниение и дыхание протекают при участии кислорода. Это окислительно-восстановительные процессы.Для ускорения процессов окисления вместо обыкновенного воздуха применяют кислород или воздух, обогащенный кислородом. Кислород используют для интенсификации окислительных процессов в химической промышленности (производство азотной, серной кислот, искусственного жидкого топлива, смазочных масел и других веществ).Металлургическая промышленность расходует довольно много кислорода. Кислород используют для получения высоких температур. Температура кислородно-ацетиленового пламени достигает 3500°С, кислородно-водородного - 3000°С В медицине кислород применяют для облегчения дыхания. Его используют в кислородных приборах при выполнении работ в трудной для дыхания атмосфере.


Сера - один из немногих химических элементов, которыми уже несколько тысячелетий пользуется человек. Она широко распространена в природе и встречается как в свободном состоянии (самородная сера), так а в соединениях. Минералы, содержащие серу, можно разделить на две группы - сульфиды (колчеданы, блески, обманки) и сульфаты. Самородная сера в больших количествах встречается в Италии (остров Сицилия) и США. В СНГ месторождения самородной серы имеются в Поволжье, в государствах Средней Азии, в Крыму и других районах.К минералам первой группы относятся свинцовый блеск PbS, медный блеск Cu2S, серебряный блеск - Ag2S, цинковая обманка - ZnS, кадмиевая обманка - CdS, пирит или железный колчедан - FeS2, халькопирит - CuFeS2, киноварь - HgS.К минералам второй группы можно отнести гипс CaSO4 2Н2О, мирабилит (глауберова соль) - Na2SO4 10Н2O, кизерит - MgSO4 Н2О.Сера содержится в организмах животных и растений, так как входит в состав белковых молекул. Органические соединения серы содержатся в нефти. Получение 1. При получении серы из природных соединений, например из серного колчедана, его нагревают до высоких температур. Серный колчедан разлагается с образованием сульфида железа (II) и серы: FeS2=FeS+S 2. Серу можно получить окислением сероводорода недостатком кислорода по реакции: 2H2S+O2=2S+2Н2O3. В настоящее время распространено получение серы восстановлением углеродом диоксида серы SO2 - побочного продукта при выплавке металлов из сернистых руд:SO2+С = СO2+S4. Отходящие газы металлургических и коксовых печей содержат смесь диоксида серы и сероводорода. Эту смесь пропускают при высокой температуре над катализатором: H2S+SO2=2H2O+3S Сера представляет собой твердое хрупкое вещество лимонно-желтого цвета. В воде практически нерастворима, но хорошо растворима в сероуглероде CS2 анилине и некоторых других раство-рителях.Плохо проводит тепло и электрический ток. Сера образует несколько аллотропных модификаций:Природная сера состоит из смеси четырех устойчивых изотопов:3216S,3316S,3416S,3616S. Химические свойстваАтом серы, имея незавершенный внешний энергетический уровень, может присоединять два электрона и проявлять степень окисления -2.Такую степень окисления сера проявляет в соединениях с металлами и водородом (Na2S, H2S). При отдаче или оттягивании электронов к атому более электроотрицательного элемента степень окисления серы может быть +2, +4, +6.Нахолоду сера сравнительно инертна, но с повышением температуры ее реакционная способность повышается. 1. С металлами сера проявляет окислительные свойства. При этих реакциях образуются сульфиды (с золотом, платиной и иридием не реагирует): Fe+S=FeS
2. С водородом при нормальных условиях сера не взаимодействует, а при 150-200°С протекает обратимая реакция:H2+S«H2S 3. В реакциях с металлами и с водородом сера ведет себя как типичный окислитель, а в присутствии сильных окислителей проявляет восстановительные свойства.S+3F2=SF6 (с иодом не реагирует)4. Горение серы в кислороде протекает при 280°С, а на воздухе при 360°С. При этом образуется смесь SO2 и SO3:S+O2=SO2 2S+3O2=2SO35. При нагревании без доступа воздуха сера непосредственно соединяется с фосфором, углеродом, проявляя окислительные свойства: 2Р+3S=P2S3 2S + С = CS26. При взаимодействии со сложными веществами сера ведет себя в основном как восстановитель:

7. Сера способна к реакциям диспропорционирования. Так, при кипячении порошка серы с щелочами образуются сульфиты и сульфиды: Серу широко применяют в промышленности и сельском хозяйстве. Около половины ее добычи расходуется для получения серной кислоты. Используют серу для вулканизации каучука: при этом каучук превращается в резину.В виде серного цвета (тонкого порошка) серу применяют для борьбы с болезнями виноградника и хлопчатника. Ее употребляют для получения пороха, спичек, светящихся составов. В медицине приготовляют серные мази для лечения кожных заболеваний.

31 Элементы IV А подгруппы.

Углерод (С), кремний (Si), германий (Ge), олово (Sn), свинец (РЬ) - элементы 4 группы главной подгруппы ПСЭ. На внешнем электронном слое атомы этих элементов имеют 4 электрона: ns2np2. В подгруппе с ростом порядкового номера элемента увеличивается атомный радиус, неметаллические свойства ослабевают, а металлические усиливаются: углерод и кремний - неметаллы, германий, олово, свинец - металлы. Элементы этой подгруппы проявляют как положительную, так и отрицательную степени окисления: -4; +2; +4.

Элемент Электр.формула рад нм ОЭО С.О.
C 2s 2 2p 2 0.077 2.5 -4; 0; +3; +4
14 Si 3s 2 3p 2 0.118 1.74 -4; 0; +3; +4
32 Ge 4s 2 4p 2 0.122 2.02 -4; 0; +3; +4
50 Sn 5s 2 5p 2 0.141 1.72 0; +3; +4
82 Pb 6s 2 6p 2 0.147 1.55 0; +3; +4

--------------------->(металлические свойства возрастают)

Трансаргоноидные оксисоединения серы устойчивее соответствующих соединений хлора, а соединения фосфора еще устойчивее. Хлорная кислота и перхлораты являются сильными окислителями, тогда как серная кислота и сульфаты слабые окислители, а фосфорная кислота и фосфаты еще слабее. Это различие в свойствах соответствует значениям электроотрицательности х = 3 для Сl, 2,5 для S, 2,1 для Р, причем Δх (относительно кислорода) равно 0,5 для Сl, 1,0 для S, 1,4 для Р. Приведенные ниже характерные значения теплот реакции отражают увеличение значений Δх :

НСl (г.) + 2O 2 (г.) → НСlO 4 (ж.) + 8 кДж·моль -1

H 2 S (г.) + 2O 2 (г.) → H 2 SO 4 (ж.) + 790 кДж·моль -1

Н 3 Р (г.) + 2O 2 (г.) → Н 3 РO 4 (ж.) + 1250 кДж·моль -1

Устойчивым соединениям серы, селена и теллура соответствуют несколько значений степени окисления от -2 до +6, как показано на прилагаемой схеме:

6 SO 3 , H 2 SO 4 , SF 6 H 2 SeO 4 , SeF 6 TeO 3 , Te(OH) 6 , TeF 6

4 SO 2 , H 2 SO 3 SeO 2 , H 2 SeO 3 TeO 2

0 S 8 , S 2 Se Te

2 H 2 S, S 2- H 2 Se H 2 Te

Окислы серы

Нормальновалентная окись серы (моноксид) SО значительно менее устойчива, чем трансаргоноидные окислы SO 2 и SO 3 . Теплоты их образования имеют следующие значения:

1/8S 8 (к.) + 1/2O 2 (г.) → SО (г.) - 7 кДж·моль -1

1/8S 8 (к.) + O 2 (г.) → SО 2 (г.) + 297 кДж·моль -1

1/8S 8 (к.) + 3/2O 2 (г.) → SО 3 (г.) + 396 кДж·моль -1

Из первых двух уравнений следует, что разложение окиси серы на двуокись серы и серу сопровождается выделением большого количества тепла

2SО (г.) → 1/8S 8 (к.) + SО 2 (г.) + 311 кДж·моль -1

Поэтому не удивительно, что окись серы неизвестна как устойчивое соединение, а существует только в виде чрезвычайно реакционноспособных молекул в очень разреженном газообразном состоянии или в замороженных матрицах. Этот окисел имеет структуру

с двумя электронами, имеющими параллельные спины, и напоминает молекулы О 2 и S 2 .

Двуокись (диоксид) серы SО 2 образуется при горении серы или сульфидов, например пирита (FeS 2)

S + O 2 → SO 2

FeS 2 + 11O 2 → 2Fe 2 O 3 + 8SO 2

Это бесцветный газ с характерным резким запахом. Температуры плавления и кипения двуокиси серы -75 и -10 °С соответственно.

В лабораторных условиях двуокись серы обычно получают действием сильной кислоты на твердый кислый сульфит натрия

Н 2 SO 4 + NaHSO 3 → NaНSO 4 + Н 2 O + SO 2

Ее можно очистить и осушить, барботируя через концентрированную серную кислоту. Двуокись серы имеет следующую электронную структуру:

В этой структуре использована одна 3d -орбиталь, а также 3s -орбиталь и три 3p -орбитали. Экспериментально установленная длина связи сера- кислород равна 143 пм; это несколько меньше значения 149 пм, которого можно было бы ожидать для двойной связи. Угол О-S-О равен 119,5°.

Большие количества двуокиси серы идут на производство серной кислоты, сернистой кислоты и сульфитов. SO 2 убивает грибки и бактерии и находит применение при консервировании и сушке чернослива, урюка и других фруктов. Раствор кислого сульфита кальция Са(НSO 3) 2 , получаемый реакцией двуокиси серы с гидроокисью кальция, используют в производстве бумажной пульпы из древесины. Он растворяет лигнин - вещество, скрепляющее целлюлозные волокна, и освобождает эти волокна, которые затем перерабатывают в бумагу.

Трехокись (триоксид) серы SO 3 образуется в очень небольших количествах при горении серы на воздухе. Обычно ее получают окислением двуокиси серы воздухом в присутствии катализатора. Реакция образования этого соединения из простых веществ экзотермична, однако менее экзотермична (считая на атом кислорода), чем реакция образования двуокиси серы. Особенность равновесия

SO 2 (г.) + 1/2O 2 (г.) → SO 3 (г.)

заключается в том, что удовлетворительный выход SO 3 можно получить при низких температурах; реакция протекает почти полностью. Однако при низких температурах скорость реакции настолько мала, что прямое соединение реагирующих веществ нельзя положить в основу промышленного процесса. При высоких температурах, когда достигается удовлетворительная скорость реакции, выход низок вследствие неблагоприятного положения равновесия.

Решением этой проблемы явилось открытие соответствующих катализаторов (платина, пятиокись ванадия), которые ускоряют реакцию, не влияя на ее равновесие. Каталитическая реакция протекает не в газовой смеси, а на поверхности катализатора при соприкосновении с ней молекул. На практике двуокись серы, получаемую при сжигании серы или пирита, смешивают с воздухом и пропускают над катализатором при температуре 400-450°С. В этих условиях примерно 99% двуокиси серы превращается в трехокись серы. Этот метод используют главным образом при производстве серной кислоты.

Трехокись серы представляет собой газ, обладающий сильным коррозионным действием; он энергично соединяется с водой, давая серную кислоту

SO 3 (г.) + Н 2 O (ж.) → Н 2 SO 4 (ж.) + 130 кДж·моль -1

Рис. 8.3. Трехокись серы и некоторые кислородные кислоты серы.

Трехокись серы легко растворяется в серной кислоте с образованием олеума , или дымящей серной кислоты , состоящей в основном из дисерной кислоты Н 2 S 2 O 7 (называемой также пиросерной кислотой)

SO 3 + Н 2 SO 4 ⇔ Н 2 S 2 O 7

При 44,5°С трехокись серы конденсируется в бесцветную жидкость, отвердевающую при 16,8°С с образованием прозрачных кристаллов. Это вещество полиморфно, причем образующиеся при 16,8°С кристаллы являются неустойчивой формой (α-форма). Устойчивая форма - шелковистые кристаллы, похожие на асбест, которые образуются при непродолжительном выдерживании альфа-кристаллов или жидкости в присутствии следов влаги (рис. 8.3). Существует также несколько других форм этого вещества, однако они трудно поддаются изучению вследствие крайне медленного превращения одной формы в другую. При температуре выше 50°С кристаллы, похожие на асбест, медленно испаряются, образуя пары SO 3 .

Молекулы трехокиси серы в газовой фазе, в жидкости и в альфа-кристаллах обладают электронной структурой

Молекула имеет плоское строение с такой же длиной связей (143 пм), как и в молекуле двуокиси серы.

Свойства трехокиси серы в значительной степени можно объяснить меньшей устойчивостью двойной связи сера - кислород по сравнению с двумя одинарными связями между ними. Так, в результате реакции с водой одна двойная связь в трехокиси серы заменяется на две одинарные связи в образующейся серной кислоте

О возросшей устойчивости продукта свидетельствует большое количество теплоты, выделяющейся при реакции.

Сернистая кислота

Раствор сернистой кислоты Н 2 SO 3 получают растворением двуокиси серы в воде. Как сернистая кислота, так и ее соли, сульфиты, являются сильными восстановителями. Они образуют серную кислоту Н 2 SO 4 и сульфаты при окислении кислородом, галогенами, перекисью водорода и подобными им окислителями.

Сернистая кислота имеет структуру

Серная кислота и сульфаты

Серная кислота Н 2 SO 4 - один из самых важных химических продуктов, находящих применение в химической промышленности и связанных с ней отраслях. Это тяжелая маслянистая жидкость (плотность 1,838 г·см -3), слегка дымящая на воздухе вследствие выделения следов трехокиси серы, которые затем, соединяясь с парами воды, образуют капельки серной кислоты. Чистая серная кислота при нагревании дает пар, богатый трехокисью серы, а затем при 338°С кипит, сохраняя постоянный состав (98% Н 2 SO 4 и 2% Н 2 O). Это и есть обычная промышленная «концентрированная серная кислота».

Концентрированная серная кислота оказывает сильное коррозионное действие. Она жадно соединяется с водой; смешивание с водой сопровождается выделением большого количества тепла в результате образования иона гидроксония

Н 2 SO 4 + 2Н 2 O → 2Н 3 O + + SO 4 2-

Для разбавления концентрированной серной кислоты ее следует тонкой струей вливать в воду , перемешивая при этом раствор; воду нельзя приливать к кислоте , так как это вызовет вскипание и сильное разбрызгивание кислоты. Разбавленная кислота занимает меньший объем, чем ее составляющие, причем эффект сокращения объема максимален при соотношении Н 2 SO 4: Н 2 O =1: 2 [(Н 3 O +) 2 (SO 4) 2- ].

Химические свойства и применение серной кислоты

Применение серной кислоты определяется ее химическими свойствами - ее используют как кислоту, в качестве обезвоживающего средства и окислителя.

Серная кислота имеет высокую температуру кипения (330°С), что позволяет применять ее для обработки солей более летучих кислот с целью получения этих кислот. Азотную кислоту, например, можно получить нагреванием нитрата натрия с серной кислотой

NaNO 3 + Н 2 SO 4 → NaHSO 4 + HNO 3

Азотная кислота отгоняется при 86°С. Серную кислоту применяют также для производства растворимых фосфатных удобрений, сульфата аммония, используемого в качестве удобрения, других сульфатов, а также многих химикатов и лекарственных препаратов. Сталь обычно очищают от ржавчины погружением в ванну с серной кислотой («травлением») перед покрытием цинком, оловом или эмалью. Серная кислота служит электролитом в обычных свинцовых аккумуляторах.

Серная кислота обладает настолько сильной способностью поглощать воду, что ее можно использовать в качестве эффективного обезвоживающего средства. Газы, не реагирующие с серной кислотой, можно осушать, пропуская их через нее. Дегидратирующая сила концентрированой серной кислоты настолько велика, что органические соединения, подобные сахару, под ее действием теряют водород и кислород в виде воды

$C_{12}H_{22}O_{11} \rightarrow 12C + 11H_{2}O$

Сахар (сахароза) H 2 SO 4

Многие взрывчатые вещества, например нитроглицерин, получают реакцией между органическими соединениями и азотной кислотой, в результате чего образуются взрывчатое вещество и вода, например

С 3 Н 5 (ОН) 3 + 3HNO 3 → С 3 Н 5 (NO 3) 3 + 3Н 2 O

Глицерин H 2 SO 4 Нитроглицерин

Чтобы заставить эти обратимые реакции идти слева направо, азотную кислоту смешивают с серной кислотой, которая благодаря своему обезвоживающему действию способствует образованию продуктов реакции. (Два других примера приведены в разд. 7.7.)

Горячая концентрированная серная кислота является сильным окислителем; продуктом ее восстановления является двуокись серы. Серная кислота растворяет медь и способна даже окислять углерод

Сu + 2H 2 SO 4 → СuSO 4 + 2Н 2 О + SO 2

С + 2H 2 SO 4 → СO 2 + 2Н 2 О + 2SO 2

Растворение меди в горячей концентрированной серной кислоте иллюстрирует общую реакцию - растворение неактивного металла в кислоте при одновременном действии окислителя . Активные металлы окисляются до катионов под действием иона водорода, который при этом восстанавливается до элементарного водорода, например

Zn + 2Н + → Zn 2+ + Н 2 (г.)

Подобная реакция с медью не идет. Однако медь можно окислить до иона Сu 2+ действием сильного окислителя, например хлора или азотной кислоты, или же, как показано выше, горячей концентрированной серной кислотой.

Сульфаты

Серная кислота соединяется с основаниями, образуя средние сульфаты, например К 2 SO 4 (сульфат калия), и кислые сульфаты (иногда называемые бисульфатами), например кислый сульфат калия КНSO 4 .

Малорастворимые сульфаты встречаются в виде минералов, ю числу которых относятся СаSO 4 ·2Н 2 O (гипс), SrSO 4 , ВаSO 4 (барит) и РbSO 4 . Наименее растворим из всех сульфатов сульфат бария; поэтому его образование в виде белого осадка служит качественной реакцией на сульфат-ион.

К числу наиболее распространенных растворимых сульфатов относятся: Na 2 SO 4 ·10Н 2 O, (NH 4) 2 SO 4 , MgSO 4 ·7Н 2 O (горькая соль), СuSO 4 ·5Н 2 O (медный купорос), FeSO 4 ·7Н 2 O, (NH 4) 2 Fe(SO 4) 2 ·6Н 2 O (хорошо кристаллизующаяся и легко поддающаяся очистке соль, применяемая в аналитической химии для приготовления стандартных растворов двухвалентного железа), ZnSO 4 ·7Н 2 O, КАl(SO 4) 2 ·12Н 2 O (квасцы), (NH 4)Аl(SO 4) 2 ·12Н 2 O (алюминиево-аммонийные квасцы) и КСr(SO 4) 2 ·12Н 2 O (хромовые квасцы).

Тио- или сульфокислоты

Тиосульфат натрия Na 2 S 2 O 3 ·5Н 2 O (неправильно называемый «гипосульфитом натрия»)-вещество, применяемое в фотографии. Его получают кипячением раствора сульфита натрия с чистой серой

SO 3 2- + S → S 2 O 3 2-

Бисульфит-ион Тиосульфат-ион

Тиосерная кислота Н 2 S 2 O 3 неустойчива; при обработке тиосульфата кислотой образуются двуокись серы и сера.

Структура иона тиосульфата S 2 O 3 2- интересна тем, что два атома серы не эквивалентны. Этот ион представляет собой ион сульфата SO 4 2- , в котором один из атомов кислорода замещен атомом серы (рис. 8.4). Центральному атому серы можно приписать степень окисления + 6, а присоединенному атому серы степень окисления -2.

Тиосульфат-ион легко окисляется, особенно иодом, до тетратионат- иона S 4 O 6 2-

2S 2 O 3 2- → S 4 O 6 2- +2е

2S 2 O 3 2- +I 2 → S 4 O 6 2- + 2I -

Эту реакцию между тиосульфат-ионом и иодом широко используют в количественном анализе веществ, обладающих окислительными или восстановительными свойствами.

Рис. 8.4. Тиосульфат- и тетратионат-ионы.

Селен и теллур

Трансаргоноидные соединения селена очень напоминают соответствующие соединения серы. Селенаты, соли селеновой кислоты H 2 SeO 4 очень похожи на сульфаты. Теллуровая же кислота имеет формулу Те(ОН) 6 , причем большой центральный атом имеет координационное число не 4, а 6, так же как атом иода в молекуле Н 5 IO 6 .

Элемент теллур был открыт Клапротом в 1782 г. в венгерских золотосодержащих рудах. Название теллур происходит от греческого «теллус» - земля.
В 1817 г. Берцеллиус открыл в шламе свинцовых камер сернокислотного завода элемент, близкий по свойствам к теллуру. Он был назван по греческому названию луны - селеном.
Селен и теллур - элементы VI группы периодической системы. По химическим свойствам они близки к сере, но отличаются от нее, в особенности теллур, отчетливо выраженными металлическими свойствами. Подобно сере сетей и теллур оpразуют аморфную и кристаллические формы.
Известны две кристаллические модификации селена. Наиболее устойчив серый или металлический селен, имеющий гексагональную структуру (а = 4,354 А, с = 4,949 А). Он получается при медленном охлаждении расплавленного селена. При осаждении селена из растворов или быстром охлаждении паров селен получается в виде рыхлого красного порошка Красный селен имеет моноклинную кристаллическую структуру. При нагревании до 120° красный селен переходит в серый.
Стекловидный селен получается при быстром охлаждении расплавленного селена в виде хрупкой серовато-свинцовой массы. При температуре около 50° стекловидный селен начинает размягчаться, при более высокой температуре он переходит в кристаллический серый селен.
Кристаллический теллур получается при конденсации паров теллура. Он обладает серебристо-белым цветом. Известны две модификации теллура - α- и β-теллур, Гексагональная α-модификация изоморфна серому селену (а = 4,445 А, с = 5,91 А). Точка перехода α⇔β-теллур 354°. Из водных растворов восстановители осаждают коричневый порошок аморфного теллура.
Физические свойства селена и теллура

Селен является типичным полупроводником. При комнатной температуре он плохо проводит электрический ток. Электропроводность селена сильно зависит от интенсивности освещения. На свету электропроводность в 1000 раз выше, чем в темноте. Наибольшее действие оказывают лучи с длиной волны около 700 мл.
Теллур обладает более высокой электропроводностью, чем селен, причем электросопротивление сильно возрастает при высоких давлениях.
Оба элемента хрупки при обычной температуре, но при нагревании поддаются пластической деформации.
При обычной температуре селен и теллур не реагируют с кислородом. При нагревании на воздухе они окисляются с воспламенением, образуя SeO2 и TeO2. Селен горит синим пламенем, теллур - синим пламенем с зеленоватой каемкой. Горение селена сопровождается характерным запахом («запах гнилой редьки»).
Вода и неокисляющие кислоты (разбавленная серчая и соляная кислоты) не действуют на селен и теллур. Элементы растворяются в концентрированной серной кислоте, азотной кислоте, а также в горячих концентрированных растворах щелочей.
Важным свойством селена и теллура, которое используют в технологии их получения, является их способность растворяться в сернистых щелочах с образованием полисульфидов, которые легко разлагаются кислотами с выделением соответственно селена и теллура.
Селен растворяется в растворах сульфита натрия с образованием соединения типа тиосульфата Na2SeSO3, которое разлагается при подкислении с выделением элементарного селена.
Co всеми галогенами селен и теллур реагируют при обычной температуре. С металлами они образуют селениды и теллуриды, аналогичные сульфидам (например, Na2Se, Ag2Se и др.). Подобно сере, селен и теллур образуют газообразные селеноводород (H2Se) и теллурводород (H2Te), получающиеся при действии кислот на селениды и теллуриды.
Непосредственно элементарный теллур не соединяется с водородом, а селен вступает в реакцию с водородом при темпера туре выше 400°.

17.12.2019

Серия Far Cry продолжает радовать своих игроков стабильностью. За столько времени становится понятно, чем нужно заниматься в этой игре. Охота, выживание, захват...

16.12.2019

Создавая дизайн жилого помещения, особое внимание следует уделить интерьеру гостиной - именно она станет центром вашей “вселенной”....

15.12.2019

Невозможно представить себе строительство дома без использования строительных лесов. В прочих сферах хозяйственной деятельности такие конструкции также используются. С...

14.12.2019

В качестве способа неразъемного соединения изделий из металлов сварка появилась немногим более века назад. При этом невозможно в данный момент переоценить ее значение. В...

14.12.2019

Оптимизация пространства вокруг является крайне важной как для мелких, так и для крупных складских помещений. Это существенно упрощает выполнение работ и оказывает...

13.12.2019

Металлочерепица – металлический материал для покрытия кровли. Полимерными материалами и цинком покрыта поверхность листов. Натуральную черепицу имитирует материал...

13.12.2019

Испытательное оборудование получило широкое применение в разных сферах. Его качество должно быть безупречным. Чтобы достичь такой цели, устройства оснащаются...

13.12.2019

Французский стиль в интерьере стал популярным в последнее время среди любителей, изысканных и в то же время простых решений....

13.12.2019

Художественная ковка является ремеслом, которое требует от мастера особых навыков и умений, а также усидчивости и таланта. Во все эпохи компоненты украшения здания,...

В подгруппу кислорода входит пять элементов: кислород, сера, селен, теллур и полоний (радиоактивный металл). Это р-элементы VI группы периодической системы Д.И.Менделеева. Они имеют групповое название – халькогены , что означает «образующие руды».

Свойства элементов подгруппы кислорода

Свойства

Те

Ро

1. Порядковый номер

2. Валентные электроны

2 s 2 2р 4

З s 2 3р 4

4 s 2 4р 4

5s 2 5p 4

6s 2 6p 4

3. Энергия ио низации атома, эВ

13,62

10,36

9,75

9,01

8,43

4. Относительная электроотрицательность

3,50

2,48

2,01

1,76

5. Степень окисления в соединениях

1, -2,

2, +2, +4, +6

4, +6

4, +6

2, +2

6. Радиус атома, нм

0,066

0,104

0,117 0,137

0,164

У атомов халькогенов одинаковое строение внешнего энергетического уровня - ns 2 nр 4 . Этим объясняется сходство их химических свойств. Все халькогены в соединениях с водородом и металлами проявляют степень окисления -2, а в соединениях с кислородом и другими активными неметаллами - обычно +4 и +6. Для кислорода, как и для фтора, не типична степень окис­ления, равная номеру группы. Он проявляет степень окисления обыч­но -2 и в соединении со фтором +2. Такие значения степеней окисления следуют из электронного строения халькогенов

У атома кислорода на 2р-подуровне два неспаренных электрона. Его электроны не могут разъединяться, поскольку отсутствует d-подуровень на внешнем (втором) уровне, т. е. отсутствуют свободные орбитали . Поэтому валентность кислорода всегда равна двум, а степень окисления -2 и +2 (например, в Н 2 О и ОF 2). Таковы же валентность и степени окисления у а тома серы в невозбужденном состоянии. При переходе в возбужденное состояние (что имеет место при подводе энергии, например при нагревании) у атома серы сначала разъединяются Зр — , а затем 3s -электроны (показано стрелками). Число неспаренных электронов, а, следовательно, и валентность в первом случае равны четырем (например, в SO 2), а во втором - шести (например, в SO 3). Очевидно, четные валентности 2, 4, 6 свойственны аналогам серы - селену, теллуру и полонию, а их степени окисления могут быть равны -2, +2, +4 и +6.

Водородные соединения элементов подгруппы кислорода отвечают формуле Н 2 R (R — символ элемента): Н 2 О, Н 2 S , Н 2 S е, Н 2 Те. Они называ ются хальководородами . При растворении их в воде образуются кислоты. Сила этих кислот возрастает с ростом по­рядкового номера элемента, что объясняется уменьшением энергии связи в ряду соединений Н 2 R . Вода, диссоциирующая на ионы Н + и ОН — , является амфотерным электролитом .

Сера, селен и теллур образуют одинаковые формы соединений с кислородом типа R О 2 и R О 3- . Им соответствуют кислоты типа Н 2 R О 3 и Н 2 R О 4- . С ростом порядкового номера элемента сила этих кислот убы вает. Все они проявляют окислительные свойства, а кислоты типа Н 2 R О 3 также и восстановительные.

Закономерно изменяются свойства простых веществ: с увеличением заряда ядра ослабевают неметаллические и возрастают металлические свойства. Так, кислород и теллур - неметаллы, но последний обладает металлическим блеском и проводит электричество.