Уравнение конической поверхности второго порядка. Конические поверхности. Построение конических сечений

Содержание статьи

КОНИЧЕСКИЕ СЕЧЕНИЯ, плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину (рис. 1). С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев, рассматриваемых в последнем разделе, коническими сечениями являются эллипсы, гиперболы или параболы.

Конические сечения часто встречаются в природе и технике. Например, орбиты планет, обращающихся вокруг Солнца, имеют форму эллипсов. Окружность представляет собой частный случай эллипса, у которого большая ось равна малой. Параболическое зеркало обладает тем свойством, что все падающие лучи, параллельные его оси, сходятся в одной точке (фокусе). Это используется в большинстве телескопов-рефлекторов, где применяются параболические зеркала, а также в антеннах радаров и специальных микрофонах с параболическими отражателями. От источника света, помещенного в фокусе параболического отражателя, исходит пучок параллельных лучей. Поэтому в мощных прожекторах и автомобильных фарах используются параболические зеркала. Гипербола является графиком многих важных физических соотношений, например, закона Бойля (связывающего давление и объем идеального газа) и закона Ома, задающего электрический ток как функцию сопротивления при постоянном напряжении.

РАННЯЯ ИСТОРИЯ

Открывателем конических сечений предположительно считается Менехм (4 в. до н.э.), ученик Платона и учитель Александра Македонского. Менехм использовал параболу и равнобочную гиперболу для решения задачи об удвоении куба.

Трактаты о конических сечениях, написанные Аристеем и Евклидом в конце 4 в. до н.э., были утеряны, но материалы из них вошли в знаменитые Конические сечения Аполлония Пергского (ок. 260–170 до н.э.), которые сохранились до нашего времени. Аполлоний отказался от требования перпендикулярности секущей плоскости образующей конуса и, варьируя угол ее наклона, получил все конические сечения из одного кругового конуса, прямого или наклонного. Аполлонию мы обязаны и современными названиями кривых – эллипс, парабола и гипербола.

В своих построениях Аполлоний использовал двухполостной круговой конус (как на рис. 1), поэтому впервые стало ясно, что гипербола – кривая с двумя ветвями. Со времен Аполлония конические сечения делятся на три типа в зависимости от наклона секущей плоскости к образующей конуса. Эллипс (рис. 1,а ) образуется, когда секущая плоскость пересекает все образующие конуса в точках одной его полости; парабола (рис. 1,б ) – когда секущая плоскость параллельна одной из касательных плоскостей конуса; гипербола (рис. 1,в ) – когда секущая плоскость пересекает обе полости конуса.

ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ

Изучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.

Эти определения конических сечений как плоских кривых подсказывают и способ их построения с помощью натянутой нити.

Эллипс.

Если концы нити заданной длины закреплены в точках F 1 и F 2 (рис. 2), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F 1 и F 2 называются фокусами эллипса, а отрезки V 1 V 2 и v 1 v 2 между точками пересечения эллипса с осями координат – большей и малой осями. Если точки F 1 и F 2 совпадают, то эллипс превращается в окружность.

Гипербола.

При построении гиперболы точка P , острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F 1 и F 2 , как показано на рис. 3,а . Расстояния подобраны так, что отрезок PF 2 превосходит по длине отрезок PF 1 на фиксированную величину, меньшую расстояния F 1 F 2 . При этом один конец нити проходит под шпеньком F 1 и оба конца нити проходят поверх шпенька F 2 . (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV 1 Q ) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и потягивая оба конца нити вниз за точку F 2 , а когда точка P окажется ниже отрезка F 1 F 2 , придерживая нить за оба конца и осторожно потравливая (т.е. отпуская) ее. Вторую ветвь гиперболы (P ў V 2 Q ў ) мы вычерчиваем, предварительно поменяв ролями шпеньки F 1 и F 2 .

Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Эти прямые, называемые асимптотами гиперболы, строятся как показано на рис. 3,б . Угловые коэффициенты этих прямых равны ± (v 1 v 2)/(V 1 V 2), где v 1 v 2 – отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F 1 F 2 ; отрезок v 1 v 2 называется сопряженной осью гиперболы, а отрезок V 1 V 2 – ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v 1 , v 2 , V 1 , V 2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек v 1 и v 2 . Они находятся на одинаковом расстоянии, равном

от точки пересечения осей O . Эта формула предполагает построение прямоугольного треугольника с катетами Ov 1 и V 2 O и гипотенузой F 2 O .

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной. Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными.

Парабола.

Фокусы эллипса и гиперболы были известны еще Аполлонию, но фокус параболы, по-видимому, впервые установил Папп (2-я пол. 3 в.), определивший эту кривую как геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой, которая называется директрисой. Построение параболы с помощью натянутой нити, основанное на определении Паппа, было предложено Исидором Милетским (6 в.). Расположим линейку так, чтобы ее край совпал с директрисой LL ў (рис. 4), и приложим к этому краю катет AC чертежного треугольника ABC . Закрепим один конец нити длиной AB в вершине B треугольника, а другой – в фокусе параболы F . Натянув острием карандаша нить, прижмем острие в переменной точке P к свободному катету AB чертежного треугольника. По мере того, как треугольник будет перемещаться вдоль линейки, точка P будет описывать дугу параболы с фокусом F и директрисой LL ў , так как общая длина нити равна AB , отрезок нити прилегает к свободному катету треугольника, и поэтому оставшийся отрезок нити PF должен быть равен оставшейся части катета AB , т.е. PA . Точка пересечения V параболы с осью называется вершиной параболы, прямая, проходящая через F и V , – осью параболы. Если через фокус провести прямую, перпендикулярную оси, то отрезок этой прямой, отсекаемый параболой, называется фокальным параметром. Для эллипса и гиперболы фокальный параметр определяется аналогично.

СВОЙСТВА КОНИЧЕСКИХ СЕЧЕНИЙ

Определения Паппа.

Установление фокуса параболы навело Паппа на мысль дать альтернативное определение конических сечений в целом. Пусть F заданная точка (фокус), а L – заданная прямая (директриса), не проходящая через F , и D F и D L – расстояния от подвижной точки P до фокуса F и директрисы L соответственно. Тогда, как показал Папп, конические сечения определяются как геометрические места точек P , для которых отношение D F /D L является неотрицательной постоянной. Это отношение называется эксцентриситетом e конического сечения. При e e > 1 – гипербола; при e = 1 – парабола. Если F лежит на L , то геометрические места имеют вид прямых (действительных или мнимых), которые являются вырожденными коническими сечениями.

Бросающаяся в глаза симметрия эллипса и гиперболы говорит о том, что у каждой из этих кривых есть по две директрисы и по два фокуса, и это обстоятельство навело Кеплера в 1604 на мысль, что и у параболы существует второй фокус и вторая директриса – бесконечно удаленные точка и прямая. Точно также и окружность можно рассматривать как эллипс, фокусы которого совпадают с центром, а директрисы находятся в бесконечности. Эксцентриситет e в этом случае равен нулю.

Конструкция Данделена.

Фокусы и директрисы конического сечения можно наглядно продемонстрировать, если воспользоваться сферами, вписанными в конус и называемыми сферами (шарами) Данделена в честь бельгийского математика и инженера Ж.Данделена (1794–1847), предложившего следующую конструкцию. Пусть коническое сечение образовано пересечением некоторой плоскости p с двухполостным прямым круговым конусом с вершиной в точке O . Впишем в этот конус две сферы S 1 и S 2 , которые касаются плоскости p в точках F 1 и F 2 соответственно. Если коническое сечение – эллипс (рис. 5,а ), то обе сферы находятся внутри одной и той же полости: одна сфера расположена над плоскостью p , а другая – под ней. Каждая образующая конуса касается обеих сфер, и геометрическое место точек касания имеет вид двух окружностей C 1 и C 2 , расположенных в параллельных плоскостях p 1 и p 2 . Пусть P – произвольная точка на коническом сечении. Проведем прямые PF 1 , PF 2 и продлим прямую PO . Эти прямые – касательные к сферам в точках F 1 , F 2 и R 1 , R 2 . Поскольку все касательные, проведенные к сфере из одной точки, равны, то PF 1 = PR 1 и PF 2 = PR 2 . Следовательно, PF 1 + PF 2 = PR 1 + PR 2 = R 1 R 2 . Так как плоскости p 1 и p 2 параллельны, отрезок R 1 R 2 имеет постоянную длину. Таким образом, величина PR 1 + PR 2 одна и та же для всех положений точки P , и точка P принадлежит геометрическому месту точек, для которых сумма расстояний от P до F 1 и F 2 постоянна. Следовательно, точки F 1 и F 2 – фокусы эллиптического сечения. Кроме того, можно показать, что прямые, по которым плоскость p пересекает плоскости p 1 и p 2 , – директрисы построенного эллипса. Если p пересекает обе полости конуса (рис. 5,б ), то две сферы Данделена лежат по одну сторону от плоскости p , по одной сфере в каждой полости конуса. В этом случае разность между PF 1 и PF 2 постоянна, и геометрическое место точек P имеет форму гиперболы с фокусами F 1 и F 2 и прямыми – линиями пересечения p с p 1 и p 2 – в качестве директрис. Если коническое сечение – парабола, как показано на рис. 5,в , то в конус можно вписать только одну сферу Данделена.

Другие свойства.

Свойства конических сечений поистине неисчерпаемы, и любое из них можно принять за определяющее. Важное место в Математическом собрании Паппа (ок. 300), Геометрии Декарта (1637) и Началах Ньютона (1687) занимает задача о геометрическом месте точек относительно четырех прямых. Если на плоскости заданы четыре прямые L 1 , L 2 , L 3 и L 4 (две из которых могут совпадать) и точка P такова, что произведение расстояний от P до L 1 и L 2 пропорционально произведению расстояний от P до L 3 и L 4 , то геометрическое место точек P является коническим сечением. Ошибочно полагая, что Аполлоний и Папп не сумели решить задачу о геометрическом месте точек относительно четырех прямых, Декарт, чтобы получить решение и обобщить его, создал аналитическую геометрию.

АНАЛИТИЧЕСКИЙ ПОДХОД

Алгебраическая классификация.

В алгебраических терминах конические сечения можно определить как плоские кривые, координаты которых в декартовой системе координат удовлетворяют уравнению второй степени. Иначе говоря, уравнение всех конических сечений можно записать в общем виде как

где не все коэффициенты A , B и C равны нулю. С помощью параллельного переноса и поворота осей уравнение (1) можно привести к виду

ax 2 + by 2 + c = 0

px 2 + qy = 0.

Первое уравнение получается из уравнения (1) при B 2 № AC , второе – при B 2 = AC . Конические сечения, уравнения которых приводятся к первому виду, называются центральными. Конические сечения, заданные уравнениями второго вида с q № 0, называются нецентральными. В рамках этих двух категорий существуют девять различных типов конических сечений в зависимости от знаков коэффициентов.

2831) Если коэффициенты a , b и c имеют один и тот же знак, то не существует вещественных точек, координаты которых удовлетворяли бы уравнению. Такое коническое сечение называется мнимым эллипсом (или мнимой окружностью, если a = b ).

2) Если a и b имеют один знак, а c – противоположный, то коническое сечение – эллипс (рис. 1,а ); при a = b – окружность (рис. 6,б ).

3) Если a и b имеют разные знаки, то коническое сечение – гипербола (рис. 1,в ).

4) Если a и b имеют разные знаки и c = 0, то коническое сечение состоит из двух пересекающихся прямых (рис. 6,а ).

5) Если a и b имеют один знак и c = 0, то существует только одна действительная точка на кривой, удовлетворяющая уравнению, и коническое сечение – две мнимые пересекающиеся прямые. В этом случае также говорят о стянутом в точку эллипсе или, если a = b , стянутой в точку окружности (рис. 6,б ).

6) Если либо a , либо b равно нулю, а остальные коэффициенты имеют разные знаки, то коническое сечение состоит из двух параллельных прямых.

7) Если либо a , либо b равно нулю, а остальные коэффициенты имеют один знак, то не существует ни одной действительной точки, удовлетворяющей уравнению. В этом случае говорят, что коническое сечение состоит из двух мнимых параллельных прямых.

8) Если c = 0, и либо a , либо b также равно нулю, то коническое сечение состоит из двух действительных совпадающих прямых. (Уравнение не определяет никакого конического сечения при a = b = 0, поскольку в этом случае исходное уравнение (1) не второй степени.)

9) Уравнения второго типа определяют параболы, если p и q отличны от нуля. Если p № 0, а q = 0, мы получаем кривую из п. 8. Если же p = 0, то уравнение не определяет никакого конического сечения, поскольку исходное уравнение (1) не второй степени.

Вывод уравнений конических сечений.

Любое коническое сечение можно также определить как кривую, по которой плоскость пересекается с квадратичной поверхностью, т.е. с поверхностью, задаваемой уравнением второй степени f (x , y , z ) = 0. По-видимому, конические сечения были впервые распознаны именно в этом виде, а их названия (см. ниже ) связаны с тем, что они были получены при пересечении плоскости с конусом z 2 = x 2 + y 2 . Пусть ABCD – основание прямого кругового конуса (рис. 7) с прямым углом при вершине V . Пусть плоскость FDC пересекает образующую VB в точке F , основание – по прямой CD и поверхность конуса – по кривой DFPC , где P – любая точка на кривой. Проведем через середину отрезка CD – точку E – прямую EF и диаметр AB . Через точку P проведем плоскость, параллельную основанию конуса, пересекающую конус по окружности RPS и прямую EF в точке Q . Тогда QF и QP можно принять, соответственно, за абсциссу x и ординату y точки P . Получившаяся кривая будет параболой.

Построение, представленное на рис. 7, можно использовать для вывода общих уравнений конических сечений. Квадрат длины отрезка перпендикуляра, восстановленного из любой точки диаметра до пересечения с окружностью, всегда равен произведению длин отрезков диаметра. Поэтому

y 2 = RQ Ч QS .

Для параболы отрезок RQ имеет постоянную длину (так как при любом положении точки P он равен отрезку AE ), а длина отрезка QS пропорциональна x (из соотношения QS /EB = QF /FE ). Отсюда следует, что

где a – постоянный коэффициент. Число a выражает длину фокального параметра параболы.

Если угол при вершине конуса острый, то отрезок RQ не равен отрезку AE ; но соотношение y 2 = RQ Ч QS эквивалентно уравнению вида

где a и b – постоянные, или, после сдвига осей, уравнению

являющемуся уравнением эллипса. Точки пересечения эллипса с осью x (x = a и x = –a ) и точки пересечения эллипса с осью y (y = b и y = –b ) определяют соответственно большую и малую оси. Если угол при вершине конуса тупой, то кривая пересечения конуса и плоскости имеет вид гиперболы, и уравнение приобретает следующий вид:

или, после переноса осей,

В этом случае точки пересечения с осью x , задаваемые соотношением x 2 = a 2 , определяют поперечную ось, а точки пересечения с осью y , задаваемые соотношением y 2 = –b 2 , определяют сопряженную ось. Если постоянные a и b в уравнении (4a) равны, то гипербола называется равнобочной. Поворотом осей ее уравнение приводится к виду

xy = k .

Теперь из уравнений (3), (2) и (4) мы можем понять смысл названий, данных Аполлонием трем основным коническим сечениям. Термины «эллипс», «парабола» и «гипербола» происходят от греческих слов, означающих «недостает», «равен» и «превосходит». Из уравнений (3), (2) и (4) ясно, что для эллипса y 2 b 2 /a ) x , для параболы y 2 = (a ) x и для гиперболы y 2 > (2b 2 /a ) x . В каждом случае величина, заключенная в скобки, равна фокальному параметру кривой.

Сам Аполлоний рассматривал только три общих типа конических сечений (перечисленные выше типы 2, 3 и 9), но его подход допускает обобщение, позволяющее рассматривать все действительные кривые второго порядка. Если секущую плоскость выбрать параллельной круговому основанию конуса, то в сечении получится окружность. Если секущая плоскость имеет только одну общую точку с конусом, его вершину, то получится сечение типа 5; если она содержит вершину и касательную к конусу, то мы получаем сечение типа 8 (рис. 6,б ); если секущая плоскость содержит две образующие конуса, то в сечении получается кривая типа 4 (рис. 6,а ); при переносе вершины в бесконечность конус превращается в цилиндр, и если при этом плоскость содержит две образующие, то получается сечение типа 6.

Если на окружность смотреть под косым углом, то она выглядит как эллипс. Взаимосвязь между окружностью и эллипсом, известная еще Архимеду, становится очевидной, если окружность X 2 + Y 2 = a 2 с помощью подстановки X = x , Y = (a /b ) y преобразовать в эллипс, заданный уравнением (3a). Преобразование X = x , Y = (ai /b ) y , где i 2 = –1, позволяет записать уравнение окружности в виде (4a). Это показывает, что гиперболу можно рассматривать как эллипс с мнимой малой осью, или, наоборот, эллипс можно рассматривать как гиперболу с мнимой сопряженной осью.

Соотношение между ординатами окружности x 2 + y 2 = a 2 и эллипса (x 2 /a 2) + (y 2 /b 2) = 1 непосредственно приводит к формуле Архимеда A = p ab для площади эллипса. Кеплеру была известна приближенная формула p (a + b ) для периметра эллипса, близкого к окружности, но точное выражение было получено лишь в 18 в. после введения эллиптических интегралов. Как показал Архимед, площадь параболического сегмента составляет четыре третьих площади вписанного треугольника, но длину дуги параболы удалось вычислить лишь после того, как в 17 в. было изобретено дифференциальное исчисление.

ПРОЕКТИВНЫЙ ПОДХОД

Проективная геометрия тесно связана с построением перспективы. Если начертить окружность на прозрачном листе бумаги и поместить под источником света, то эта окружность будет проецироваться на находящуюся ниже плоскость. При этом, если источник света расположен непосредственно над центром окружности, а плоскость и прозрачный лист параллельны, то проекция также будет окружностью (рис. 8). Положение источника света называется точкой схода. Она обозначена буквой V . Если V расположена не над центром окружности или если плоскость не параллельна листу бумаги, то проекция окружности принимает форму эллипса. При еще большем наклоне плоскости большая ось эллипса (проекции окружности) удлиняется, и эллипс постепенно переходит в параболу; на плоскости, параллельной прямой VP , проекция имеет вид параболы; при еще большем наклоне проекция принимает вид одной из ветвей гиперболы.

Каждой точке на исходной окружности соответствует некоторая точка на проекции. Если проекция имеет вид параболы или гиперболы, то говорят, что точка, соответствующая точке P , находится в бесконечности или бесконечно удалена.

Как мы видели, при подходящем выборе точек схода окружность может проецироваться в эллипсы различных размеров и с различными эксцентриситетами, а длины больших осей не имеют прямого отношения к диаметру проецируемой окружности. Поэтому проективная геометрия не имеет дела с расстояниями или длинами самими по себе, ее задача – изучение отношения длин, которое сохраняется при проецировании. Это отношение можно найти с помощью следующего построения. Через любую точку P плоскости проведем две касательные к любой окружности и соединим точки касания прямой p . Пусть другая прямая, проходящая через точку P , пересекает окружность в точках C 1 и C 2 , а прямую p – в точке Q (рис. 9). В планиметрии доказывается, что PC 1 /PC 2 = –QC 1 /QC 2 . (Знак минус возникает из-за того, что направление отрезка QC 1 противоположно направлениям других отрезков.) Иначе говоря, точки P и Q делят отрезок C 1 C 2 внешним и внутренним образом в одном и том же отношении; говорят также, что гармоническое отношение четырех отрезков равно - 1. Если окружность спроецировать в коническое сечение и сохранить за соответствующими точками те же обозначения, то гармоническое отношение (PC 1)(QC 2)/(PC 2)(QC 1) останется равным - 1. Точка P называется полюсом прямой p относительно конического сечения, а прямая p – полярой точки P относительно конического сечения.

Когда точка P приближается к коническому сечению, поляра стремится занять положение касательной; если точка P лежит на коническом сечении, то ее поляра совпадает с касательной к коническому сечению в точке P . Если точка P расположена внутри конического сечения, то построить ее поляру можно следующим образом. Проведем через точку P любую прямую, пересекающую коническое сечение в двух точках; проведем касательные к коническому сечению в точках пересечения; предположим, что эти касательные пересекаются в точке P 1 . Проведем через точку P еще одну прямую, которая пересекается с коническим сечением в двух других точках; допустим, что касательные к коническому сечению в этих новых точках пересекаются в точке P 2 (рис. 10). Прямая, проходящая через точки P 1 и P 2 , и есть искомая поляра p . Если точка P приближается к центру O центрального конического сечения, то поляра p удаляется от O . Когда точка P совпадает с O , то ее поляра становится бесконечно удаленной, или идеальной, прямой на плоскости.

СПЕЦИАЛЬНЫЕ ПОСТРОЕНИЯ

Особый интерес для астрономов представляет следующее простое построение точек эллипса с помощью циркуля и линейки. Пусть произвольная прямая, проходящая через точку O (рис. 11,а ), пересекает в точках Q и R две концентрические окружности с центром в точке O и радиусами b и a , где b a. Проведем через точку Q горизонтальную прямую, а через R – вертикальную прямую, и обозначим их точку пересечения P P при вращении прямой OQR вокруг точки O будет эллипс. Угол f между прямой OQR и большой осью называется эксцентрическим углом, а построенный эллипс удобно задавать параметрическими уравнениями x = a cos f , y = b sin f . Исключая из них параметр f , получим уравнение (3а).

Для гиперболы построение во многом аналогично. Произвольная прямая, проходящая через точку O , пересекает одну из двух окружностей в точке R (рис. 11,б ). К точке R одной окружности и к конечной точке S горизонтального диаметра другой окружности проведем касательные, пересекающие OS в точке T и OR – в точке Q . Пусть вертикальная прямая, проходящая через точку T , и горизонтальная прямая, проходящая через точку Q , пересекаются в точке P . Тогда геометрическим местом точек P при вращении отрезка OR вокруг O будет гипербола, задаваемая параметрическими уравнениями x = a sec f , y = b tg f , где f – эксцентрический угол. Эти уравнения были получены французским математиком А.Лежандром (1752–1833). Исключив параметр f , мы получим уравнение (4a).

Эллипс, как заметил Н.Коперник (1473–1543), можно построить с помощью эпициклического движения. Если окружность катится без скольжения по внутренней стороне другой окружности вдвое большего диаметра, то каждая точка P , не лежащая на меньшей окружности, но неподвижная относительно нее, опишет эллипс. Если точка P находится на меньшей окружности, то траектория этой точки представляет собой вырожденный случай эллипса – диаметр большей окружности. Еще более простое построение эллипса было предложено Проклом в 5 в. Если концы A и B отрезка прямой AB заданной длины скользят по двум неподвижным пересекающимся прямым (например, по координатным осям), то каждая внутренняя точка P отрезка опишет эллипс; нидерландский математик Ф. ван Схотен (1615–1660) показал, что любая точка в плоскости пересекающихся прямых, неподвижная относительно скользящего отрезка, также опишет эллипс.

Б.Паскаль (1623–1662) в 16 лет сформулировал ныне знаменитую теорему Паскаля, гласящую: три точки пересечения противоположных сторон шестиугольника, вписанного в любое коническое сечение, лежат на одной прямой. Из этой теоремы Паскаль вывел более 400 следствий.

Конической поверхностью называется поверхность, образованная прямыми - образующими конуса, - проходящими через данную точку - вершину конуса - и пересекающими данную линию - направляющую конуса. Пусть направляющая конуса имеет уравнения

а вершина конуса имеет координаты Канонические уравнения образующих конуса как прямых, проходящих через точку ) и через точку направляющей, будут;

Исключая х, у и z из четырех уравнений (3) и (4), получим искомое уравнение конической поверхности. Это уравнение обладает весьма простым свойством: оно однородно (т. е. все его члены одного измерения) относительно разностей . В самом деле, допустим сперва, что вершина конуса находится в начале координат . Пусть X, У и Z - координаты любой точки конуса; они удовлетворяют, следовательно, уравнению конуса. После замены в уравнении конуса X, У и Z соответственно через XX, ХУ, XZ, где X - произвольный множитель, уравнение должно удовлетворяться, так как XX, ХУ и XZ суть координаты точки прямой, проходящей через начало координат в точку , т. е. образующей конуса. Следовательно, уравнение конуса не изменится, если все текущие координаты умножим на одно и то число X. Отсюда следует, что это уравнение должно быть однородным относительно текущих координат.

В случае, если вершина конуса лежит в точке мы перенесем начало координат в вершину, и по доказанному преобразованное уравнение конуса будет однородно относительно ноных координат, т. е. относительно

Пример. Составить уравнение конуса с вершиной в начале координат и направляющей

Канонические уравнения образующих, проходящих через вершину (0, 0, С) конуса и точку направляющей, будут:

Исключим х, у и из четырех данных уравнений. Заменяя через с, определим и у из последних двух уравнений.

С тем отличием, что вместо «плоских» графиков мы рассмотрим наиболее распространенные пространственные поверхности, а также научимся грамотно их строить от руки. Я довольно долго подбирал программные средства для построения трёхмерных чертежей и нашёл пару неплохих приложений, но, несмотря на всё удобство использования, эти программы плохо решают важный практический вопрос. Дело в том, что в обозримом историческом будущем студенты по-прежнему будут вооружены линейкой с карандашом, и, даже располагая качественным «машинным» чертежом, многие не смогут корректно перенести его на клетчатую бумагу. Поэтому в методичке особое внимание уделено технике ручного построения, и значительная часть иллюстраций страницы представляет собой handmade-продукт.

Чем отличается этот справочный материал от аналогов?

Обладая приличным практическим опытом, я очень хорошо знаю, с какими поверхностями чаще всего приходится иметь дело в реальных задачах высшей математики, и надеюсь, что эта статья поможет вам в кратчайшие сроки пополнить свой багаж соответствующими знаниями и прикладными навыками, которых в 90-95% случаев должно хватить.

Что нужно уметь на данный момент?

Самое элементарное:

Во-первых, необходимо уметь правильно строить пространственную декартову систему координат (см. начало статьи Графики и свойства функций ) .

Что вы приобретёте после прочтения этой статьи?

Бутылку После освоения материалов урока вы научитесь быстро определять тип поверхности по её функции и/или уравнению, представлять, как она расположена в пространстве, и, конечно же, выполнять чертежи. Ничего страшного, если не всё уложится в голове с 1-го прочтения – к любому параграфу по мере надобности всегда можно вернуться позже.

Информация по силам каждому – для её освоения не нужно каких-то сверхзнаний, особого художественного таланта и пространственного зрения.

Начинаем!

На практике пространственная поверхность обычно задаётся функцией двух переменных или уравнением вида (константа правой части чаще всего равна нулю либо единице) . Первое обозначение больше характерно для математического анализа, второе – для аналитической геометрии . Уравнение , по существу, является неявно заданной функцией 2 переменных, которую в типовых случаях легко привести к виду . Напоминаю простейший пример c :

уравнение плоскости вида .

– функция плоскости в явном виде .

Давайте с неё и начнём:

Распространенные уравнения плоскостей

Типовые варианты расположения плоскостей в прямоугольной системе координат детально рассмотрены в самом начале статьи Уравнение плоскости . Тем не менее, ещё раз остановимся на уравнениях, которые имеют огромное значение для практики.

Прежде всего, вы должны на полном автомате узнавать уравнения плоскостей, которые параллельны координатным плоскостям . Фрагменты плоскостей стандартно изображают прямоугольниками, которые в последних двух случаях выглядят, как параллелограммы. По умолчанию размеры можно выбрать любые (в разумных пределах, конечно), при этом желательно, чтобы точка, в которой координатная ось «протыкает» плоскость являлась центром симметрии:


Строго говоря, координатные оси местами следовало изобразить пунктиром, но во избежание путаницы будем пренебрегать данным нюансом.

(левый чертёж) неравенство задаёт дальнее от нас полупространство, исключая саму плоскость ;

(средний чертёж) неравенство задаёт правое полупространство, включая плоскость ;

(правый чертёж) двойное неравенство задаёт «слой», расположенный между плоскостями , включая обе плоскости.

Для самостоятельной разминки:

Пример 1

Изобразить тело, ограниченное плоскостями
Составить систему неравенств, определяющих данное тело.

Из-под грифеля вашего карандаша должен выйти старый знакомый прямоугольный параллелепипед . Не забывайте, что невидимые рёбра и грани нужно прочертить пунктиром. Готовый чертёж в конце урока.

Пожалуйста, НЕ ПРЕНЕБРЕГАЙТЕ учебными задачами, даже если они кажутся слишком простыми. А то может статься, раз пропустили, два пропустили, а затем потратили битый час, вымучивая трёхмерный чертёж в каком-нибудь реальном примере. Кроме того, механическая работа поможет гораздо эффективнее усвоить материал и развить интеллект! Не случайно в детском саду и начальной школе детей загружают рисованием, лепкой, конструкторами и другими заданиями на мелкую моторику пальцев. Простите за отступление, не пропадать же двум моим тетрадям по возрастной психологии =)

Следующую группу плоскостей условно назовём «прямыми пропорциональностями» – это плоскости, проходящие через координатные оси:

2) уравнение вида задаёт плоскость, проходящую через ось ;

3) уравнение вида задаёт плоскость, проходящую через ось .

Хотя формальный признак очевиден (какая переменная отсутствует в уравнении – через ту ось и проходит плоскость) , всегда полезно понимать суть происходящих событий:

Пример 2

Построить плоскость

Как лучше осуществить построение? Предлагаю следующий алгоритм:

Сначала перепишем уравнение в виде , из которого хорошо видно, что «игрек» может принимать любые значения. Зафиксируем значение , то есть, будем рассматривать координатную плоскость . Уравнения задают пространственную прямую , лежащую в данной координатной плоскости. Изобразим эту линию на чертеже. Прямая проходит через начало координат, поэтому для её построения достаточно найти одну точку. Пусть . Откладываем точку и проводим прямую.

Теперь возвращаемся к уравнению плоскости . Поскольку «игрек» принимает любые значения, то построенная в плоскости прямая непрерывно «тиражируется» влево и вправо. Именно так и образуется наша плоскость , проходящая через ось . Чтобы завершить чертёж, слева и справа от прямой откладываем две параллельные линии и поперечными горизонтальными отрезками «замыкаем» символический параллелограмм:

Так как условие не накладывало дополнительных ограничений, то фрагмент плоскости можно было изобразить чуть меньших или чуть бОльших размеров.

Ещё раз повторим смысл пространственного линейного неравенства на примере . Как определить полупространство, которое оно задаёт? Берём какую-нибудь точку, не принадлежащую плоскости , например, точку из ближнего к нам полупространства и подставляем её координаты в неравенство:

Получено верное неравенство , значит, неравенство задаёт нижнее (относительно плоскости ) полупространство, при этом сама плоскость не входит в решение.

Пример 3

Построить плоскости
а) ;
б) .

Это задания для самостоятельного построения, в случае затруднений используйте аналогичные рассуждения. Краткие указания и чертежи в конце урока.

На практике особенно распространены плоскости, параллельные оси . Частный случай, когда плоскость проходит через ось, только что был в пункте «бэ», и сейчас мы разберём более общую задачу:

Пример 4

Построить плоскость

Решение : в уравнение в явном виде не участвует переменная «зет», а значит, плоскость параллельна оси аппликат. Применим ту же технику, что и в предыдущих примерах.

Перепишем уравнение плоскости в виде из которого понятно, что «зет» может принимать любые значения. Зафиксируем и в «родной» плоскости начертим обычную «плоскую» прямую . Для её построения удобно взять опорные точки .

Поскольку «зет» принимает все значения, то построенная прямая непрерывно «размножается» вверх и вниз, образуя тем самым искомую плоскость . Аккуратно оформляем параллелограмм разумной величины:

Готово.

Уравнение плоскости в отрезках

Важнейшая прикладная разновидность. Если все коэффициенты общего уравнения плоскости отличны от нуля , то оно представимо в виде , который называется уравнением плоскости в отрезках . Очевидно, что плоскость пересекает координатные оси в точках , и большое преимущество такого уравнения состоит в лёгкости построения чертежа:

Пример 5

Построить плоскость

Решение : сначала составим уравнение плоскости в отрезках. Перебросим свободный член направо и разделим обе части на 12:

Нет, здесь не опечатка и все дела происходят именно в пространстве! Исследуем предложенную поверхность тем же методом, что недавно использовали для плоскостей. Перепишем уравнение в виде , из которого следует, что «зет» принимает любые значения. Зафиксируем и построим в плоскости эллипс . Так как «зет» принимает все значения, то построенный эллипс непрерывно «тиражируется» вверх и вниз. Легко понять, что поверхность бесконечна :

Данная поверхность называется эллиптическим цилиндром . Эллипс (на любой высоте) называется направляющей цилиндра, а параллельные прямые, проходящие через каждую точку эллипса называются образующими цилиндра (которые в прямом смысле слова его и образуют). Ось является осью симметрии поверхности (но не её частью!).

Координаты любой точки, принадлежащей данной поверхности, обязательно удовлетворяют уравнению .

Пространственное неравенство задаёт «внутренность» бесконечной «трубы», включая саму цилиндрическую поверхность, и, соответственно, противоположное неравенство определяет множество точек вне цилиндра.

В практических задачах наиболее популярен частный случай, когда направляющей цилиндра является окружность :

Пример 8

Построить поверхность, заданную уравнением

Бесконечную «трубу» изобразить невозможно, поэтому художества ограничиваются, как правило, «обрезком».

Сначала удобно построить окружность радиуса в плоскости , а затем ещё пару окружностей сверху и снизу. Полученные окружности (направляющие цилиндра) аккуратно соединяем четырьмя параллельными прямыми (образующими цилиндра):

Не забываем использовать пунктир для невидимых нам линий.

Координаты любой точки, принадлежащей данному цилиндру, удовлетворяют уравнению . Координаты любой точки, лежащей строго внутри «трубы», удовлетворяют неравенству , а неравенство задаёт множество точек внешней части. Для лучшего понимания рекомендую рассмотреть несколько конкретных точек пространства и убедиться в этом самостоятельно.

Пример 9

Построить поверхность и найти её проекцию на плоскость

Перепишем уравнение в виде из которого следует, что «икс» принимает любые значения. Зафиксируем и в плоскости изобразим окружность – с центром в начале координат, единичного радиуса. Так как «икс» непрерывно принимает все значения, то построенная окружность порождает круговой цилиндр с осью симметрии . Рисуем ещё одну окружность (направляющую цилиндра) и аккуратно соединяем их прямыми (образующими цилиндра). Местами получились накладки, но что делать, такой уж наклон:

На этот раз я ограничился кусочком цилиндра на промежутке и это не случайно. На практике зачастую и требуется изобразить лишь небольшой фрагмент поверхности.

Тут, к слову, получилось 6 образующих – две дополнительные прямые «закрывают» поверхность с левого верхнего и правого нижнего углов.

Теперь разбираемся с проекцией цилиндра на плоскость . Многие читатели понимают, что такое проекция, но, тем не менее, проведём очередную физкульт-пятиминутку. Пожалуйста, встаньте и склоните голову над чертежом так, чтобы остриё оси смотрело перпендикулярно вам в лоб. То, чем с этого ракурса кажется цилиндр – и есть его проекция на плоскость . А кажется он бесконечной полосой, заключенным между прямыми , включая сами прямые. Данная проекция – это в точности область определения функций (верхний «жёлоб» цилиндра), (нижний «жёлоб»).

Давайте, кстати, проясним ситуацию и с проекциями на другие координатные плоскости. Пусть лучи солнца светят на цилиндр со стороны острия и вдоль оси . Тенью (проекцией) цилиндра на плоскость является аналогичная бесконечная полоса – часть плоскости , ограниченная прямыми ( – любое), включая сами прямые.

А вот проекция на плоскость несколько иная. Если смотреть на цилиндр из острия оси , то он спроецируется в окружность единичного радиуса , с которой мы начинали построение.

Пример 10

Построить поверхность и найти её проекции на координатные плоскости

Это задача для самостоятельного решения. Если условие не очень понятно, возведите обе части в квадрат и проанализируйте результат; выясните, какую именно часть цилиндра задаёт функция . Используйте методику построения, неоднократно применявшуюся выше. Краткое решение, чертёж и комментарии в конце урока.

Эллиптические и другие цилиндрические поверхности могут быть смещены относительно координатных осей, например:

(по знакомым мотивам статьи о линиях 2-го порядка ) – цилиндр единичного радиуса с линией симметрии, проходящей через точку параллельно оси . Однако на практике подобные цилиндры попадаются довольно редко, и совсем уж невероятно встретить «косую» относительно координатных осей цилиндрическую поверхность.

Параболические цилиндры

Как следует из названия, направляющей такого цилиндра является парабола .

Пример 11

Построить поверхность и найти её проекции на координатные плоскости.

Не мог удержаться от этого примера =)

Решение : идём проторенной тропой. Перепишем уравнение в виде , из которого следует, что «зет» может принимать любые значения. Зафиксируем и построим обычную параболу на плоскости , предварительно отметив тривиальные опорные точки . Поскольку «зет» принимает все значения, то построенная парабола непрерывно «тиражируется» вверх и вниз до бесконечности. Откладываем такую же параболу, скажем, на высоте (в плоскости) и аккуратно соединяем их параллельными прямыми (образующими цилиндра ):

Напоминаю полезный технический приём : если изначально нет уверенности в качестве чертежа, то линии сначала лучше прочертить тонко-тонко карандашом. Затем оцениваем качество эскиза, выясняем участки, где поверхность скрыта от наших глаз, и только потом придаём нажим грифелю.

Проекции.

1) Проекцией цилиндра на плоскость является парабола . Следует отметить, что в данном случае нельзя рассуждать об области определения функции двух переменных – по той причине, что уравнение цилиндра не приводимо к функциональному виду .

2) Проекция цилиндра на плоскость представляет собой полуплоскость , включая ось

3) И, наконец, проекцией цилиндра на плоскость является вся плоскость .

Пример 12

Построить параболические цилиндры:

а) , ограничиться фрагментом поверхности в ближнем полупространстве;

б) на промежутке

В случае затруднений не спешим и рассуждаем по аналогии с предыдущими примерами, благо, технология досконально отработана. Не критично, если поверхности будут получаться немного корявыми – важно правильно отобразить принципиальную картину. Я и сам особо не заморачиваюсь над красотой линий, если получился сносный чертёж «на троечку», обычно не переделываю. В образце решения, кстати, использован ещё один приём, позволяющий улучшить качество чертежа;-)

Гиперболические цилиндры

Направляющими таких цилиндров являются гиперболы . Этот тип поверхностей, по моим наблюдениям, встречается значительно реже, чем предыдущие виды, поэтому я ограничусь единственным схематическим чертежом гиперболического цилиндра :

Принцип рассуждения здесь точно такой же – обычная школьная гипербола из плоскости непрерывно «размножается» вверх и вниз до бесконечности.

Рассмотренные цилиндры относятся к так называемым поверхностям 2-го порядка , и сейчас мы продолжим знакомиться с другими представителями этой группы:

Эллипсоид. Сфера и шар

Каноническое уравнение эллипсоида в прямоугольной системе координат имеет вид , где – положительные числа (полуоси эллипсоида), которые в общем случае различны . Эллипсоидом называют как поверхность , так и тело , ограниченное данной поверхностью. Тело, как многие догадались, задаётся неравенством и координаты любой внутренней точки (а также любой точки поверхности) обязательно удовлетворяют этому неравенству. Конструкция симметрична относительно координатных осей и координатных плоскостей:

Происхождение термина «эллипсоид» тоже очевидно: если поверхность «разрезать» координатными плоскостями, то в сечениях получатся три различных (в общем случае)

Поверхности второго порядка – это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени.

1. Эллипсоид.

Эллипсоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением :

Уравнение (1) называется каноническим уравнением эллипсоида.

Установим геометрический вид эллипсоида. Для этого рассмотрим сечения данного эллипсоида плоскостями, параллельными плоскости Oxy. Каждая из таких плоскостей определяется уравнением вида z=h , где h – любое число, а линия, которая получается в сечении, определяется двумя уравнениями

(2)

Исследуем уравнения (2) при различных значениях h .

> c (c>0), то и уравнения (2) определяют мнимый эллипс, т. е. точек пересечения плоскости z=h с данным эллипсоидом не существует. , то и линия (2) вырождается в точки (0; 0; + c ) и (0; 0; - c ) (плоскости касаются эллипсоида). , то уравнения (2) можно представить в виде

откуда следует, что плоскость z=h пересекает эллипсоид по эллипсу с полуосями

и . При уменьшении значения и увеличиваются и достигают своих наибольших значений при , т. е. в сечении эллипсоида координатной плоскостью Oxy получается самый большой эллипс с полуосями и .

Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям Oxz и Oyz .

Таким образом, рассмотренные сечения позволяют изобразить эллипсоид как замкнутую овальную поверхность (рис. 156). Величины a, b, c называются полуосями эллипсоида. В случае a=b=c эллипсоид является сферо й .

2. Однополосный гиперболоид.

Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением (3)

Уравнение (3) называется каноническим уравнением однополосного гиперболоида.

Установим вид поверхности (3). Для этого рассмотрим сечение ее координатными плоскостями Oxy (y=0) и Oyx (x=0). Получаем соответственно уравнения

и

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy . Линия, получающаяся в сечении, определяется уравнениями

или (4)

из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями

и ,

достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании

величины a* и b* возрастают бесконечно.

Таким образом, рассмотренные сечения позволяют изобразить однополосный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Oxy.

Величины a, b, c называются полуосями однополосного гиперболоида.

3. Двуполостный гиперболоид.

Двуполостным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

Уравнение (5) называется каноническим уравнением двуполостного гиперболоида.

Установим геометрический вид поверхности (5). Для этого рассмотрим его сечения координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются гиперболы.

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, полученная в сечении, определяется уравнениями

или (6)

из которых следует, что при

>c (c>0) плоскость z=h пересекает гиперболоид по эллипсу с полуосями и . При увеличении величины a* и b* тоже увеличиваются. уравнениям (6) удовлетворяют координаты только двух точек: (0;0;+с) и (0;0;-с) (плоскости касаются данной поверхности). уравнения (6) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом не существует.

Величина a, b и c называются полуосями двуполостного гиперболоида.

4. Эллиптический параболоид.

Эллиптическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(7)

где p>0 и q>0.

Уравнение (7) называется каноническим уравнением эллиптического параболоида.

Рассмотрим сечения данной поверхности координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются параболы, симметричные относительно оси Oz, с вершинами в начале координат. (8)

из которых следует, что при . При увеличении h величины a и b тоже увеличиваются; при h=0 эллипс вырождается в точку (плоскостьz=0 касается данного гиперболоида). При h<0 уравнения (8) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом нет.

Таким образом, рассмотренные сечения позволяют изобразить эллиптический параболоид в виде бесконечно выпуклой чаши.

Точка (0;0;0) называется вершиной параболоида; числа p и q – его параметрами.

В случае p=q уравнение (8) определяет окружность с центром на оси Oz, т.е. эллиптический параболоид можно рассматривать как поверхность, образованную вращением параболы вокруг её оси (параболоид вращения).

5. Гиперболический параболоид.

Гиперболическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат, определяется уравнением

(9)

Основные теоретические сведения

Цилиндрической поверхностью или просто цилиндром называется всякая поверхность, которую можно получить движением прямой, перемещающийся параллельно некоторому вектору и все время пересекающей данную линию, которая носит название направляющей. Движущаяся прямая называется образующей.

Конической поверхностью или просто конусом называется поверхность, образованная движением прямой, проходящей через данную точку, называемую вершиной конуса, и скользящей по данной кривой. Движущаяся прямая называется образующей конуса, а кривая, по которой скользит образующая, - направляющей.

Вращением фигуры вокруг данной прямой (оси вращения)называется такое движение, при котором каждая точка фигуры
описывает окружность с центром на оси вращения, лежащую в плоскости, перпендикулярной к оси вращения.

Поверхность, образованная вращением линии вокруг оси, называется поверхностью вращения.

Канонические уравнения поверхностей второго порядка

Поверхность второго порядка задается в прямоугольных координатах уравнением второй степени

(7.1)

Путем преобразования координат (поворотом осей и параллельным переносом) уравнение (7.1) приводится к каноническому виду. В случае, когда в уравнении (7.1) отсутствуют члены с произведением координат , это уравнение выделением полных квадратов по,,и параллельным переносом осей координат приводится к каноническому виду подобно тому, как это делалось для линий второго порядка (см. Исследование общего уравнение линии второго порядка). Поверхности второго порядка и их канонические уравнения представлены в табл. 3.

Форму и расположение поверхностей второго порядка обычно изучают методом параллельных сечений. Сущность метода заключается в том, что поверхность пересекается несколькими плоскостями, параллельными координатным плоскостям. Форма и параметры полученных сечений позволяют выяснить форму самой поверхности.

Таблица 3

Гиперболоид:

однополостный,

двуполостный,

Параболоид:

эллиптический,

гиперболический,

эллиптический,

гиперболический,

параболический,

Примеры решения задач

Задача 7.1. Составить уравнение сферы, радиус которой , а центр находится в точке
.

Решение. Сфера – это множество точек, отстоящих от центра на одном и том же расстоянии. Следовательно, обозначив через
координаты произвольной точки
сферы и выразив через них равенство
, будем иметь

Возведя обе части равенства в квадрат, получим искомое каноническое уравнение сферы:

Если центр сферы поместить в начало координат, то уравнение сферы имеет более простой вид:

.

Ответ.
.

Задача 7.2. Составить уравнение конической поверхности с вершиной в начале координат и направляющей

(7.1)

Решение. Канонические уравнения образующих через точку
и точку
направляющей, имеет вид

(7.2)

Исключим ,,из уравнений (7.1) и (7.2). Для этого в уравнениях (7.2) заменимнаи определими:

;

Подставив эти значения ив первое уравнение системы (7.1), будем иметь:

или

Полученное уравнение определяет конус второго порядка (см. табл. 3)

Задача 7.3.

Решение. Эта поверхность есть гиперболический цилиндр с образующими, параллельными оси
Действительно, данное уравнение не содержит, а направляющая цилиндра есть гипербола

с центром симметрии в точке
и действительной осью, параллельной оси
.

Задача 7.4. Исследовать и построить поверхность, заданную уравнением

Решение. Пересечем поверхность плоскостью
. В результате имеем

откуда
. Это уравнение параболы в плоскости

Сечение заданной поверхности плоскостью
есть парабола

Сечение плоскостью
есть пара пересекающихся прямых:

Сечение плоскостями, параллельными плоскости
, есть гиперболы:

При
действительная ось гиперболы параллельна оси
, при
оси
. Исследуемая поверхность является гиперболическим параболоидом (по ассоциации с формой, поверхность получила название "седло").

Замечание. Интересным свойством гиперболического параболоида является наличие прямых линий, лежащих всеми своими точками на его поверхности. Такие прямые называются прямолинейными образующими гиперболического параболоида. Через каждую точку гиперболического параболоида проходят две прямолинейные образующие.

Задача 7.5. Какую поверхность определяет уравнение

Решение. Чтобы привести данное уравнение к каноническому виду, выделим полные квадраты переменных ,,:

Сравнивая полученное уравнение с табличными (см. табл. 3), видим, что это уравнение однополостного гиперболоида, центр которого смещен в точку
Путем параллельного переноса системы координат по формулам

приведем уравнение к каноническому виду:

Замечание. Однополостный гиперболоид, как и гиперболический, имеет два семейства прямолинейных образующих.