Влияние лазерного излучения на человека. Положительное и негативное влияние лазерного излучения на организм человека. Меры защиты от лазерных гаджетов

Использование лазерных приборов связано с определенной опасностью для человека. В данной работе будут рассмотрены только особенности практического применения лазерных приборов и способы защиты, связанные с возможностью поражения глаз и кожных покровов человека. При этом основополагающими нормативными документами являются: 825-я публикация Международной технической комиссии (МЭК) под названием "Радиационная безопас-ность лазерных изделий, классификация оборудования, требования и руководство для потребителей" как наиболее компетентная рекомендация мирового класса; новейшая отечественная разработка СНиП; ГОС

Непосредственно на человека оказывает лазерное излучение любой длины волны; однако в связи со спектральными особенностями поражения органов и существенно различными предельно допустимыми дозами облучения обычно различают воздействие на глаза и кожные покровы человека.

Можно выделить два направления применения лазеров и отрасли. Первое направление связано с целенаправленным воздействием на обрабатываемое вещество (микросварка, термообработка, резка хрупких и твердых материалов, подгонка параметров микросхем и др.), второе направление -медицина - находит все большее развитие.

Диапазон длин волн, излучаемых лазерами, охватывает видимый спектр и распространяется в инфракрасную и ультрафиолетовую области. Для каждого режима работы лазера и спектрального диапазона рекомендуются соответствующие предельно допустимые уровни (ПДУ) для энергии (W) и мощности (P) излучения, прошедшего ограничивающую апертуру d = 7 мм. Для видимого диапазона или d = 1.1 мм, для остальных, энергетической экспозиции (H) и облученности (E), усредненных по ограничивающей апертуре: H = W / Sa , E = P / Sa ,где Sa - ограничивающая апертура.

Хронические ПДУ в 5 - 10 раз ниже ПДУ однократного воздейс-твия. При одновременном воздействии ЛИ разного диапазона их действие суммируется с умножением на соответствующий энерговклад.

Лазерное излучение характеризуется некоторыми особеннос-тями:

1 - широкий спектральный (&=0.2..1 мкм) и динамический (120..200 дБ);

2 - малая длительность импульсов (до 0.1 нс.);

3 - высокая плотность мощности (до 1e+9 Вт/см^2) энергии;

4 - Измерение энергетических параметров и характеристик лазерного излучения

Виды действия лазерного излучения

Наиболее опасно лазерное излучение с длиной волны:

  • 380¸1400 нм - для сетчатки глаза,
  • 180¸380 нм и свыше 1400 нм - для передних сред глаза,
  • 180¸105 нм (т.е. во всем рассматриваемом диапазоне) - для кожи.

Основную опасность при эксплуатации лазера представляет прямое лазерное излучение.

Степень потенциальной опасности лазерного излучения зависит от мощности источника, длины волны, длительности импульса и чистоты его следования, окружающих условий, отражения и рассеяния излучения.

Биологические эффекты, возникающие при воздействии лазерного излучения на организм человека, делятся на две группы:

  • Первичные эффекты - органические изменения, возникающие непосредственно в облучаемых тканях;
  • Вторичные эффекты - неспецифические изменения, появляющиеся в организме в ответ на облучение.
  • Наиболее подвержен поражению лазерным излучениям глаз человека. Сфокусированный на сетчатке хрусталиком глаза лазерный луч будет иметь вид малого пятна с еще более плотной концентрацией энергии, чем падающее на глаз излучение. Поэтому попадание лазерного излучения в глаз опасно и может вызвать повреждение сетчатой и сосудистой оболочек с нарушением зрения. При малых плотностях энергии происходит кровоизлияние, а при больших - ожег, разрыв сетчатой оболочки, появление пузырьков глаза в стекловидном теле.
  • Лазерное излучение может вызвать также повреждение кожи и внутренних органов человека. Повреждение кожи лазерным излучением схоже с термическим ожогом. На степень повреждения влияют как входные характеристики лазеров, так и цвет, и степень пигментации кожи. Интенсивность излучения, которая вызывает повреждение кожи, намного выше интенсивности, приводящей к повреждению глаза.

Обеспечение лазерной безопасности

Методы и средства защиты от воздействия лазерного излучения можно подразделить на организационные, инженерно-технические и средства индивидуальной защиты. Надежной защитой от случайного попадания на человека является экранирование луча световодом на всем пути его действия. В качестве средств индивидуальной защиты применяются специальные защитные очки, стекла в которых подбираются в соответствии с ГОСТ 9411-81Е; технологические халаты и перчатки, изготавливаемые из хлопчатобумажной ткани светло-зеленого или голубого цвета.

В презентации к работе представлены показатели допустимых уровней лазерного излучения, а также иллюстрационный материал по видам отрицательного воздействия лазерного излучения на организм человека и способам защиты.

Лазерное излучение – это узконаправленные вынужденные потоки энергии. Оно бывает непрерывным, одной мощности или импульсным, где мощность периодически достигает определенного пика. Энергия образуется с помощью квантового генератора – лазера. Поток энергии представляет собой электромагнитные волны, которые распространяются параллельно относительно друг друга. Это создает минимальный угол рассеивания света и определенную точную направленность.

Сфера применения лазерного излучения

Свойства лазерного излучения позволяет применять его в различных сферах жизнедеятельности человека:

  • наука – исследования, опыты, эксперименты, открытия;
  • военно-оборонная промышленность и космическая навигация;
  • производственная и техническая сфера;
  • локальная термическая обработка – сварка, резка, гравировка, паяние;
  • бытовое применение – лазерные датчики для считывания штрихкода, устройства для считывания компактных дисков, указки;
  • лазерное напыление для повышения износостойкости металла;
  • создание голограмм;
  • усовершенствование оптических устройств;
  • химическая промышленность – запуск и анализ реакций.

Применение лазера в медицине

Лазерное излучение в медицине – это прорыв в лечении пациентов, требующих оперативного вмешательства. Лазер применяют для производства хирургического инструментария.

Неоспоримые преимущества хирургического лечения лазерным скальпелем очевидны. Он позволяет сделать бескровный разрез мягких тканей. Это обеспечивается мгновенной спайкой мелких сосудов и капилляров. Во время использования такого инструмента хирург полностью видит все операционное поле. Лазерный поток энергии рассекает на определенном расстоянии, не контактируя с внутренними органами и сосудами.

Важным приоритетом является обеспечение абсолютной стерильности. Строгая направленность лучей позволяет делать операции с минимальной травматизацией. Реабилитационный период пациентов значительно сокращается. Быстрее возвращается трудоспособность человека. Отличительной особенностью применения лазерного скальпеля является безболезненность в послеоперационный период.

Развитие лазерных технологий позволило расширить возможности его применения. Были обнаружены свойства лазерного излучения положительно влиять на состояние кожи. Поэтому его активно применяют в косметологии и дерматологии.

В зависимости от своего типа, кожа человека по-разному поглощает лучи и реагирует на них. Аппараты лазерного излучения могут создать нужную длину волны в каждом конкретном случае.

Применение:

  • эпиляция – разрушение волосяной луковицы и удаления волос;
  • лечение угревой сыпи;
  • удаление пигментных и родимых пятен;
  • шлифовка кожи;
  • применение при бактериальном поражении эпидермиса (обеззараживает, убивает патогенную микрофлору), излучение лазера предупреждает распространение инфекции.

Офтальмология – это первая отрасль, которая применила лазерное излучение. Направления в применении лазеров в микрохирургии глаза:

  • лазеркоагуляция – использование термических свойств для лечения сосудистых заболеваний глаза (поражение сосудов роговицы, сетчатки);
  • фотодеструкция – рассечение тканей на пике мощности лазера (вторичная катаракта и ее рассечение);
  • фотоиспарение – длительное воздействие тепла, применяют при воспалительных процессах глазного нерва, при конъюнктивите;
  • фотоабляция – постепенное удаление тканей, используют для лечения дистрофических изменений роговицы, устраняет ее помутнение, операционное лечение глаукомы;
  • лазерстимуляция – оказывает противовоспалительное, рассасывающее действие, улучшает трофику глаза, применяется для лечения склеритов, экссудации в камере глаза, гемофтальмов.

Лазерное облучение используется при онкологических заболеваниях кожи. Наиболее эффективен лазер для удаления меланобластомы. Иногда метод применяют для лечения рака пищевода или прямой кишки 1-2 стадии. При глубоком расположении опухоли и метастазах лазер не эффективен.

Какую опасность представляет лазер для человека

Влияние лазерного излучения на организм человека может быть негативным. Облучение может быть прямым, рассеянным и отраженным. Негативное воздействие обеспечивается световыми и тепловыми свойствами лучей. Степень поражения зависит от нескольких факторов – длина электромагнитной волны, место локализации воздействия, поглотительная способность тканей.

Наиболее подвержены влиянию лазерной энергии глаза. Сетчатка глаза очень чувствительна, поэтому часто случаются ее ожоги. Последствия – частичная потеря зрения, необратимая слепота. Источник лазерного излучения – инфракрасные приборы-излучатели видимого света.

Симптомы поражения радужки, сетчатки, роговицы, хрусталика лазером:

  • болезненные ощущения и спазмы в глазу;
  • отек век;
  • кровоизлияния;
  • помутнение хрусталика.

При облучении средней интенсивности возникают термические ожоги кожи. В месте контакта лазера и кожи резко повышается температура. Происходит вскипание и испарение внутриклеточной и межтканевой жидкости. Кожа становится красной. Под давлением происходит разрыв тканевых структур. На коже появляется отек, в некоторых случаях внутрикожные кровоизлияния. Впоследствии на месте ожога появляются некротические (омертвевшие) участки. В тяжелых случаях обугливание кожи происходит моментально.

Отличительный признак лазерного ожога – четкие границы поражения кожи, а пузыри образуются в эпидермисе, а не под ним.

При рассеянном поражении кожи в месте поражения она становится нечувствительной, а эритема появляется через несколько дней.

Лазерное излучение инфракрасного спектра может проникать глубоко через ткани и поражать внутренние органы. Характерность глубокого ожога – чередование здоровой и поврежденной ткани. Первоначально при воздействии лучей человек не испытывает боли. Наиболее уязвимый орган – печень.

Воздействие излучения на организм в целом вызывает функциональные расстройства центральной нервной системы, сердечно-сосудистой деятельности.

Признаки:

  • перепады артериального давления;
  • повышенная потливость;
  • необъяснимая общая утомляемость;
  • раздражительность.

Меры предосторожности и защиты от лазерного излучения

Наиболее риску облучения подвержены люди, деятельность которых связана с применением квантовых генераторов.

В соответствии с санитарными нормами лазерное излучение разделяется на четыре класса опасности. Для организма человека опасность представляет второй, третий, четвертый классы.

Технические методы защиты от лазерного излучения:

  1. Правильная планировка промышленных помещений, внутренняя отделка должна соответствовать правилам техники безопасности (лазерные лучи не должны зеркально отражаться).
  2. Соответствующее размещение излучающих установок.
  3. Ограждение зоны возможного облучения.
  4. Порядок и соблюдение правил обслуживания и эксплуатации оборудования.

Еще одна защита от лазера – индивидуальная. Она включает такие средства: очки от лазерного излучения, защитные кожухи и экраны, комплект спецодежды (технологические халаты и перчатки), линзы и призмы, отражающие лучи. Все сотрудники регулярно должны проходить профилактические медицинские осмотры.

Использование лазера в быту тоже бывает опасным для здоровья. Неправильная эксплуатация световых указок, лазерных фонариков может нанести непоправимый вред человеку. Защита от лазерного излучения предусматривает простые правила:

  1. Нельзя направлять источник излучения на стекла и зеркала.
  2. Категорически запрещено направлять лазер в глаза себе или другому человеку.
  3. Хранить гаджеты с лазерным излучением необходимо в недоступном для детей месте.

Действие лазера, в зависимости от модификации излучателя, бывает тепловым, энергетическим, фотохимическим и механическим. Наибольшую опасность представляет лазер с прямым излучением, с большой интенсивностью, узкой и ограниченной направленностью луча, высокой плотностью излучения. К опасным факторам, которые способствуют получению облучения, относится высокое производственное напряжение в сети, загрязнение воздуха химическими веществами, интенсивный шум, рентгеновское излучение. Биологические эффекты от лазерного излучения делятся на первичные (местный ожог), и вторичные (неспецифические изменения как ответная реакция всего организма). Следует помнить, что бездумное применение самодельных лазеров, световых указок, светильников, лазерных фонариков может нанести окружающим непоправимый вред.

Оптические квантовые генераторы (ОКГ, лазеры) - приборы, представляющие собой источник светового излучения совершенно нового типа. В отличие от луча любого известного источника света, несущего в себе электромагнитные волны различной длины, лазерный луч монохроматичен (электромагнитные волны строго одной длины), отличается высокой временной и пространственной когерентностью (все волны генерируются одновременно в одной фазе), узкой направленностью, что обусловливает точную фокусировку в малом объеме. Поэтому плотность мощности лазерного излучения в импульсе может быть огромна.

Имеются различного типа лазеры: твердотельные, где излучателем является твердое тело - рубин, неодим и др., газовые лазеры (гелий-неоновые, аргоновые и др.), жидкостные и полупроводниковые. Лазеры могут работать в непрерывном и импульсном режиме.

Излучение ОКГ характеризуется следующими основными параметрами: длина волны (мкм), мощность (Вт), плотность потока мощности (Вт/см2), энергия излучения (Дж) и угловая расходимость луча (угл. мин).

Сфера применения ОКГ очень широка: в различных областях народного хозяйства, в технике связи (позволяет передавать большое количество информации), в микроэлектронной, часовой промышленности, при сварке, пайке и др., в научных исследованиях, в освоении космоса.

Уникальность лазерного луча - получение большой мощности излучения на очень маленькой площади, полная стерильность - позволяет применять его в хирургии для коагуляции тканей при операциях на сетчатке, в качестве нового исследовательского инструмента в экспериментальной биологии, в цитологии (луч может достигать отдельных органоидов, не повреждая всю клетку), и др.

Все большее число лиц вовлекается в сферу действия лазеров; таким образом, этот вид излучения приобретает значение очень серьезного профессионально-гигиенического фактора.

В производственных условиях наибольшую опасность представляет не прямой световой луч, действие которого возможно только при грубом нарушении правил техники безопасности, а диффузное отражение и рассеяние луча (при визуальном контроле за попаданием луча на мишень, при наблюдении за приборами вблизи хода луча, при отражении от стен и других поверхностей). В особенности опасны зеркально отражающие поверхности. Хотя интенсивность отраженного луча невелика, однако возможно превышение безопасных для глаз уровней энергии. В лабораториях, где работают с импульсными ОКГ, имеются дополнительные неблагоприятные факторы: постоянный (80-00 дБ) и импульсный (до 120 дБ и более) шум, слепящий свет ламп накачки, утомление зрительного анализатора, нервно-эмоциональное напряжение, газовые примеси в воздушной среде - озон, окислы азота; ультрафиолетовое излучение и т. д.

Биологическое действие лазеров

Биологическое действие лазеров обусловлено двумя основными критериями: 1) физической характеристикой лазера (длина волны излучения лазера, непрерывный или импульсный режим облучения, длительность импульса, скорость повторения импульсов, удельная мощность), 2) абсорбционной характеристикой тканей. Свойства самой биологической структуры (поглощающая, отражающая способность) влияют на эффекты биологического действия лазера.

Действие лазера многогранно - электрическое, фотохимическое; основное действие - тепловое. Наиболее опасны лазеры с большой энергией в импульсе.

Прямой световой монохроматический импульс вызывает в здоровой ткани локальный ожог - коагуляцию белков, местный некроз, резко отграниченный от смежной области, асептическое воспаление с последующим развитием соединительнотканного рубца. При интенсивном облучении - расстройства васкуляризации, кровоизлияния в паренхиматозных органах. При повторных облучениях патологический эффект возрастает. Наиболее чувствительны глаз (роговица и хрусталик фокусируют излучение на сетчатке) и кожа, в особенности пигментированная.

Клиника

При прямом попадании лазерного луча в глаз - ожог сетчатки, разрывы ее. Могут быть поражены роговица, радужная оболочка, хрусталик, кожа век. Поражение, как правило, носит необратимый характер.

Для глаз опасно не только прямое, но и рассеянное отраженное излучение от какой-либо поверхности. При длительном воздействии последнего наиболее часто обнаруживаются игольчатые, стреловидные, реже - точечные помутнения хрусталика. На сетчатке - светлые, желтовато-белые, депигментированные очаги. При исследовании функционального состояния зрительного анализатора определяются снижение световой и контрастной чувствительности, увеличение времени восстановления адаптации, изменения световой чувствительности. Характерны жалобы на боли и давление в глазных яблоках, резь в глазах, утомленно глаз к концу рабочего дня, головные боли.

Помимо поражения органа зрения, при работе с ОКГ развивается комплекс неспецифических реакций со стороны различных органов и систем.

Клиника общих нарушений складывается из вегетативной дисфункции с присоединением невротических реакций на астеническом фоне. По мере увеличения профессионального стажа нарастает частота нейроциркуляторной дистонии по гипотоническому или гипертоническому вариантам в зависимости от характера лазерного излучения (непрерывный, импульсный), а также степень невротизации.

Наблюдаются также нарушения функции вестибулярного аппарата как в сторону повышения, так и понижения его возбудимости. Частота этих нарушений тоже возрастает по мере увеличения профессионального стажа.

Из биохимических показателей характерны: повышение уровня аммиака в крови, увеличение активности щелочной фосфатазы и трансфераз, изменение экскреции катехоламинов.

В эксперименте на животных при действии небольших интенсивностей энергии отмечаются изменения мозгового кровотока, сопряженные с изменением системной гемодинамики. Установлено действие лазерной энергии на гипоталамо-гипофизарную систему.

Экспертиза трудоспособности

При развитии функциональных нарушении центральной нервной системы, сердечно-сосудистого аппарата рекомендуются лечение и временный перевод на другую работу; возвращение на работу при улучшении состояния (под врачебным наблюдением) и при условии улучшения условий труда. Поражение глаз является противопоказанием к дальнейшей работе с лазером.

Профилактика

Рациональная организация условий труда лаборатории. Размещение лазера в изолированном помещении. Система сигнализации, обеспечивающая безопасность во время работы лазера. Избегать применения отражающих поверхностей. Пучок лазера должен быть направлен на неотражающий и невоспламеняющийся фон. Окраска стен матовая - в светлых тонах. Экранировка луча (в особенности мощного ОКГ) на протяжении от излучателя до объектива. Категорически запрещается пребывание людей в опасной зоне излучения ОКГ при работе лазера. Запрещается нахождение в лаборатории лиц, не занятых обслуживанием лазера. Эффективная вентиляция. Общее и местное освещение. Строгое соблюдение требований электробезопасности, мер индивидуальной защиты. Применение специально сконструированных защитных очков (для каждой длины волны свой отеческий фильтр). Работа в условиях общего яркого освещения с целью сужения зрачка. При работе с высокими энергиями избегать контакта любой части тела с прямым лучом, рекомендуется ношение черных фетровых или кожаных перчаток. Строгий офтальмологический контроль. Предварительные и периодические медицинские осмотры.

1. Прохождение монохроматического света через прозрачную среду.

2. Создание инверсной населенности. Способы накачки.

3. Принцип действия лазера. Типы лазеров.

4. Особенности лазерного излучения.

5. Характеристики лазерного излучения, применяемого в медицине.

6. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения.

7. Использование лазерного излучения в медицине.

8. Основные понятия и формулы.

9. Задачи.

Мы знаем, что свет испускается отдельными порциями - фотонами, каждый из которых возникает в результате излучательного перехода атома, молекулы или иона. Естественный свет - это совокупность огромного числа таких фотонов, различающихся по частоте и фазе, испущенных в случайные моменты времени в случайных направлениях. Получение мощных пучков монохроматического света с помощью естественных источников - задача практически неразрешимая. В то же время потребность в таких пучках ощущалась как физиками, так и специалистами многих прикладных наук. Создание лазера позволило решить эту задачу.

Лазер - устройство, генерирующее когерентные электромагнитные волны за счет вынужденного излучения микрочастиц среды, в которой создана высокая степень возбуждения одного из энергетических уровней.

Лазер (LASER Light Amplification by Stimulated of Emission Radiation) - усиление света с помощью вынужденного излучения.

Интенсивность лазерного излучения (ЛИ) во много раз превосходит интенсивность естественных источников света, а расходимость лазерного луча менее одной угловой минуты (10 -4 рад).

31.1. Прохождение монохроматического света через прозрачную среду

В лекции 27 мы выяснили, что прохождение света через вещество сопровождается как фотонным возбуждением его частиц, так и актами вынужденного излучения. Рассмотрим динамику этих процессов. Пусть в среде распространяется монохроматический свет, частота которого (ν) соответствует переходу частиц этой среды с основного уровня (E 1) на возбужденный (Е 2):

Фотоны, попадающие в частицы, находящиеся в основном состоянии, будут поглощаться, а сами частицы будут переходить в возбужденное состояние Е 2 (см. рис. 27.4). Фотоны, которые попадают в возбужденные частицы, инициируют вынужденное излучение (см. рис. 27.5). При этом происходит удвоение фотонов.

В состоянии теплового равновесия соотношение между числом возбужденных (N 2) и невозбужденных (N 1) частиц подчиняется распределению Больцмана:

где k - постоянная Больцмана, T - абсолютная температура.

При этом N 1 >N 2 и поглощение доминирует над удвоением. Следовательно, интенсивность выходящего света I будет меньше интенсивности падающего света I 0 (рис. 31.1).

Рис. 31.1. Ослабление света, проходящего через среду, в которой степень возбуждения менее 50 % (N 1 > N 2)

По мере поглощения света степень возбуждения будет расти. Когда она достигнет 50 % (N 1 = N 2), между поглощением и удвоением установится равновесие, так как вероятности попадания фотонов в возбужденную и невозбужденную частицы станут одинаковыми. Если освещение среды прекратится, то через некоторое время среда вернется в начальное состояние, соответствующее распределению Больцмана (N 1 > N 2). Сделаем предварительный вывод:

При освещении среды монохроматическим светом (31.1) невозможно добиться такого состояния среды, при котором степень возбуждения превышает 50 %. И все-таки давайте рассмотрим вопрос о прохождении света через среду, в которой каким-то способом достигнуто состояние N 2 > N 1 . Такое состояние называется состоянием с инверсной населенностью (от лат. inversio - переворачивание).

Инверсная населенность - такое состояние среды, при котором число частиц на одном из верхних уровней больше, чем на нижнем.

В среде с инверсной населенностью вероятность попадания фотона в возбужденную частицу больше, чем в невозбужденную. Поэтому процесс удвоения доминирует над процессом поглощения и имеет место усиление света (рис. 31.2).

По мере прохождения света через среду с инверсной населенностью степень возбуждения будет снижаться. Когда она достигнет 50%

Рис. 31.2. Усиление света, проходящего через среду с инверсной населенностью (N 2 > N 1)

(N 1 = N 2), между поглощением и удвоением установится равновесие и эффект усиления света исчезнет. Если освещение среды прекратится, то через некоторое время среда вернется в состояние, соответствующее распределению Больцмана (N 1 > N 2).

Если вся эта энергия выделится в излучательных переходах, то мы получим световой импульс огромной мощности. Правда, он еще не будет обладать требуемой когерентностью и направленностью, но будет в высокой степени монохроматичен (hv = E 2 - E 1). Это еще не лазер, но уже нечто близкое.

31.2. Создание инверсной населенности. Способы накачки

Так можно ли добиться инверсной населенности? Оказывается, можно, если использовать три энергетических уровня со следующей конфигурацией (рис. 31.3).

Пусть среда освещается мощной вспышкой света. Часть спектра излучения будет поглощена в переходе с основного уровня Е 1 на широкий уровень Е 3 . Напомним, что широким является энергетический уровень с малым временем релаксации. Поэтому большинство частиц, попавших на уровень возбуждения Е 3 , безызлучательно переходит на узкий метастабильный уровень Е 2 , где происходит их накопление. Вследствие узости этого уровня лишь малая доля фотонов вспышки

Рис. 31.3. Создание инверсной населенности на метастабильном уровне

способна вызвать вынужденный переход Е 2 → Е 1 . Этим и обеспечиваются условия для создания инверсной населенности.

Процесс создания инверсной населенности называется накачкой. В современных лазерах применяются различные виды накачки.

Оптическая накачка прозрачных активных сред использует импульсы света от внешнего источника.

Электроразрядная накачка газовых активных сред использует электрический разряд.

Инжекционная накачка полупроводниковых активных сред использует электрический ток.

Химическая накачка активной среды из смеси газов использует энергию химической реакции между компонентами смеси.

31.3. Принцип действия лазера. Типы лазеров

Функциональная схема лазера показана на рис. 31.4. Рабочее тело (активная среда) представляет собой длинный узкий цилиндр, торцы которого закрыты двумя зеркалами. Одно из зеркал (1) полупрозрачно. Такая система называется оптическим резонатором.

Система накачки переводит частицы с основного уровня Е 1 на поглощательный уровень Е 3 , откуда они безызлучательно переходят на метастабильный уровень Е 2 , создавая его инверсную населенность. После этого начинаются спонтанные излучательные переходы Е 2 → Е 1 с испусканием монохроматических фотонов:

Рис. 31.4. Схематическое устройство лазера

Фотоны спонтанного излучения, испущенные под углом к оси резонатора, выходят через боковую поверхность и в процессе генерации не участвуют. Их поток быстро иссякает.

Фотоны, которые после спонтанного излучения движутся вдоль оси резонатора, многократно проходят через рабочее тело, отражаясь от зеркал. При этом они взаимодействуют с возбужденными частицами, инициируя вынужденное излучение. За счет этого происходит «лавинообразное» нарастание индуцированных фотонов, движущихся в том же направлении. Многократно усиленный поток фотонов выходит через полупрозрачное зеркало, создавая мощный пучок почти параллельных когерентных лучей. Фактически лазерное излучение порождается первым спонтанным фотоном, который движется вдоль оси резонатора. Это и обеспечивает когерентность излучения.

Таким образом, лазер преобразует энергию источника накачки в энергию монохроматического когерентного света. Эффективность такого преобразования, т.е. КПД, зависит от типа лазера и лежит в диапазоне от долей процента до нескольких десятков процентов. У большинства лазеров КПД составляет 0,1-1 %.

Типы лазеров

Первый созданный лазер (1960 г.) использовал в качестве рабочего тела рубин и оптическую систему накачки. Рубин - это кристаллическая окись алюминия А1 2 О 3 , содержащая около 0,05 % атомов хрома (именно хром придает рубину розовый цвет). Атомы хрома, внедренные в кристаллическую решетку, являются активной средой

с конфигурацией энергетических уровней, изображенной на рис. 31.3. Длина волны излучения рубинового лазера равна λ = 694,3 нм. Затем появились лазеры, использующие другие активные среды.

В зависимости от типа рабочего тела лазеры делятся на газовые, твердотельные, жидкостные, полупроводниковые. В твердотельных лазерах активный элемент обычно изготавливается в виде цилиндра, длина которого много больше его диаметра. Газовые и жидкие активные среды помещают в цилиндрическую кювету.

В зависимости от способа накачки можно получить непрерывную и импульсную генерацию лазерного излучения. При непрерывной системе накачки инверсия населенности поддерживается длительное время за счет внешнего источника энергии. Например, непрерывное возбуждение электрическим разрядом в газовой среде. При импульсной системе накачки инверсия населенности создается в импульсном режиме. Частота следования импульсов от 10 -3

Гц до 10 3 Гц.

31.4. Особенности лазерного излучения

Лазерное излучение по своим свойствам значительно отличается от излучения обычных источников света. Отметим его характерные особенности.

1. Когерентность. Излучение является высококогерентным, что обусловлено свойствами вынужденного излучения. При этом имеет место не только временная, но и пространственная когерентность: разность фаз в двух точках плоскости, перпендикулярной направлению распространения, сохраняется постоянной (рис. 31.5, а).

2. Коллимированность. Лазерное излучение является коллимированным, т.е. все лучи в пучке почти параллельны друг другу (рис. 31.5, б). На большом расстоянии лазерный пучок лишь незначительно увеличивается в диаметре. Так как угол расходимости φ мал, то интенсивность лазерного пучка слабо убывает с расстоянием. Это позволяет передавать сигналы на огромные расстояния при малом ослаблении их интенсивности.

3. Монохроматичность. Лазерное излучение является в высокой степени монохроматическим, т.е. содержит волны практически одинаковой частоты (ширина спектральной линии составляет Δλ ≈0,01 нм). На

рисунке 31.5, в приведено схематическое сравнение ширины линии лазерного луча и луча обычного света.

Рис. 31.5. Когерентность (а), коллимированность (б), монохроматичность (в) лазерного излучения

До появления лазеров излучение с некоторой степенью монохроматичности удавалось получить с помощью приборов - монохроматоров, выделяющих из сплошного спектра узкие спектральные интервалы (узкие полосы длин волн), однако мощность света в таких полосах мала.

4. Высокая мощность. С помощью лазера можно обеспечить очень высокую мощность монохроматического излучения - до 10 5 Вт в непрерывном режиме. Мощность импульсных лазеров на несколько порядков выше. Так, неодимовый лазер генерирует импульс с энергией Е = 75 Дж, длительность которого t = 3х10 -12 с. Мощность в импульсе равна Р = Е/t = 2,5х10 13 Вт (для сравнения: мощность ГЭС составляет Р ~10 9 Вт).

5. Высокая интенсивность. В импульсных лазерах интенсивность лазерного излучения очень высока и может достигать I = 10 14 -10 16 Вт/см 2 (ср. интенсивность солнечного света вблизи земной поверхности I = 0,1 Вт/см 2).

6. Высокая яркость. У лазеров, работающих в видимом диапазоне, яркость лазерного излучения (сила света с единицы поверхности) очень велика. Даже самые слабые лазеры имеют яркость 10 15 кд/м 2 (для сравнения: яркость Солнца L ~ 10 9 кд/м 2).

7. Давление. При падении лазерного луча на поверхность тела создается давление (Д). При полном поглощении лазерного излучения, падающего перпендикулярно поверхности, создается давление Д = I/c, где I -интенсивность излучения, с - скорость света в вакууме. При полном отражении величина давления в два раза больше. Для интенсивности I = 10 14 Вт/см 2 = 10 18 Вт/м 2 ; Д = 3,3х10 9 Па = 33 000 атм.

8. Поляризованность. Лазерное излучение полностью поляризовано.

31.5. Характеристики лазерного излучения, применяемого в медицине

Длина волны излучения

Длины волн излучения (λ) медицинских лазеров лежат в диапазоне 0,2 -10 мкм, т.е. от ультрафиолетовой до дальней инфракрасной области.

Мощность излучения

Мощность излучения (P) медицинских лазеров варьируется в широких пределах, определяемых целями применения. У лазеров с непрерывной накачкой Р = 0,01-100 Вт. Импульсные лазеры характеризуются мощностью в импульсе Р и и длительностью импульса τ и

Для хирургических лазеров Р и = 10 3 -10 8 Вт, а длительность импульса т и = 10 -9 -10 -3 с.

Энергия в импульсе излучения

Энергия одного импульса лазерного излучения (Е и) определяется соотношением Е и = Р и -т и, где т и - длительность импульса излучения (обычно т и = 10 -9 -10 -3 с). Для хирургических лазеров Е и = 0,1-10 Дж.

Частота следования импульсов

Эта характеристика (f) импульсных лазеров показывает количество импульсов излучения, генерируемых лазером за 1 с. Для терапевтических лазеров f = 10-3 000 Гц, для хирургических f = 1-100 Гц.

Средняя мощность излучения

Эта характеристика (Р ср) импульсно-периодических лазеров показывает, какую энергию лазер излучает за 1 с, и определяется следующим соотношением:

Интенсивность (плотность мощности)

Эта характеристика (I) определяется как отношение мощности лазерного излучения к площади поперечного сечения пучка. Для непрерывных лазеров I = P/S. В случае импульсных лазеров различают интенсивность в импульсе I и = P и /S и среднюю интенсивность I ср = Р ср /S.

Интенсивность хирургических лазеров и давление, создаваемое их излучением, имеют следующие значения:

для непрерывных лазеров I ~ 10 3 Вт/см 2 , Д = 0,033 Па;

для импульсных лазеров I и ~ 10 5 -10 11 Вт/см 2 , Д = 3,3 - 3,3х10 6 Па.

Плотность энергии в импульсе

Эта величина (W) характеризует энергию, которая приходится на единицу площади облучаемой поверхности за один импульс и определяется соотношением W = E и /S, где S (см 2) - площадь светового пятна (т.е. поперечного сечения лазерного луча) на поверхности биоткани. У лазеров, используемых в хирургии, W ≈ 100 Дж/см 2 .

Параметр W можно рассматривать как дозу облучения D за 1 импульс.

31.6. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения

Изменение температуры и свойств ткани

под действием непрерывного лазерного излучения

Поглощение мощного лазерного излучения биологической тканью сопровождается выделением теплоты. Для расчета выделяющейся теплоты используют специальную величину - объемную плотность теплоты (q).

Выделение теплоты сопровождается повышением температуры и в тканях протекают следующие процессы:

при 40-60°С имеют место активация ферментов, образование отеков, изменение и в зависимости от времени действия гибель клеток денатурация протеина, начало коагуляции и некрозы;

при 60-80°С - денатурация коллагена, дефекты мембран; при 100°С - обезвоживание, выпаривание тканевой воды; свыше 150°С - обугливание;

свыше 300°С - выпаривание ткани, газообразование. Динамика протекания этих процессов изображена на рис. 31.6.

Рис. 31.6. Динамика изменения температуры ткани под воздействием непрерывного лазерного излучения

1 фаза. Сначала температура ткани повышается от 37 до 100 °С. В этом диапазоне температур термодинамические свойства ткани остаются практически неизменными, и происходит линейный рост температуры со временем (α = const и I = const).

2 фаза. При температуре 100 °С начинается выпаривание тканевой воды, и до окончания этого процесса температура остается постоянной.

3 фаза. После выпаривания воды температура вновь начинает расти, но медленнее, чем на участке 1, так как обезвоженная ткань поглощает энергию слабее нормальной.

4 фаза. По достижении температуры Т ≈ 150 °С начинается процесс обугливания и, следовательно, «почернения» биоткани. При этом коэффициент поглощения α возрастает. Поэтому наблюдается нелинейный, ускоряющийся со временем рост температуры.

5 фаза. По достижении температуры Т ≈ 300 °С начинается процесс испарения обезвоженной обугленной биоткани и рост температуры вновь прекращается. Именно в этот момент лазерный луч рассекает (удаляет) ткань, т.е. становится скальпелем.

Степень повышения температуры зависит от глубины залегания ткани (рис. 31.7).

Рис. 31.7. Процессы, протекающие в облучаемых тканях на различной глубине: а - в поверхностном слое ткань нагревается до нескольких сотен градусов и испаряется; б - мощность излучения, ослабленного верхним слоем, недостаточна для испарения ткани. Происходит коагуляция ткани (иногда совместно с обугливанием - черная жирная линия); в - происходит нагревание ткани вследствие передачи теплоты из зоны (б)

Протяженности отдельных зон определяются как характеристиками лазерного излучения, так и свойствами самой ткани (в первую очередь коэффициентами поглощения и теплопроводности).

Воздействие мощного сфокусированного пучка лазерного излучения сопровождается и возникновением ударных волн, которые могут стать причиной механического повреждения прилегающих тканей.

Абляция ткани под воздействием мощного импульсного лазерного излучения

При воздействии на ткань коротких импульсов лазерного излучения с высокой плотностью энергии реализуется другой механизм рассечения и удаления биоткани. В этом случае происходит очень быстрый нагрев тканевой жидкости до температуры Т > Т кип. При этом тканевая жидкость оказывается в метастабильном перегретом состоянии. Затем происходит «взрывное» вскипание тканевой жидкости, которое сопровождается удалением ткани без обугливания. Это явление называется абляцией. Абляция сопровождается генерацией механических ударных волн, способных вызвать механическое повреждение тканей в окрестностях зоны лазерного воздействия. Этот факт необходимо учитывать при выборе параметров импульсного лазерного излучения, например при шлифовке кожи, сверлении зубов или при лазерной коррекции остроты зрения.

31.7. Использование лазерного излучения в медицине

Процессы, характеризующие взаимодействие лазерного излучения (ЛИ) с биообъектами, можно разделить на 3 группы:

невозмущающее воздействие (не оказывающее заметного действия на биообъект);

фотохимическое действие (возбужденная лазером частица либо сама принимает участие в соответствующих химических реакциях, либо передает свое возбуждение другой частице, участвующей в химической реакции);

фоторазрушение (за счет выделения тепла или ударных волн).

Лазерная диагностика

Лазерная диагностика представляет собой невозмущающее воздействие на биообъект, использующее когерентность лазерного излучения. Перечислим основные методы диагностики.

Интерферометрия. При отражении лазерного излучения от шероховатой поверхности возникают вторичные волны, которые интерферируют между собой. В результате образуется картина темных и светлых пятен (спеклов), расположение которых дает информацию о поверхности биообъекта (метод спеклоинтерферометрии).

Голография. С помощью лазерного излучения получают 3-мерное изображение объекта. В медицине этот метод позволяет получать объемные изображения внутренних полостей желудка, глаза и т.д.

Рассеяние света. При прохождении остронаправленного лазерного пучка через прозрачный объект происходит рассеяние света. Регистрация угловой зависимости интенсивности рассеянного света (метод нефелометрии) позволяет определять размеры частиц среды (от 0,02 до 300 мкм) и степень их деформации.

При рассеянии может изменяться поляризация света, что также используется в диагностике (метод поляризационной нефелометрии).

Эффект Доплера. Этот метод основан на измерении доплеровского сдвига частоты ЛИ, который возникает при отражении света даже от медленно движущихся частиц (метод аненометрии). Таким способом измеряется скорость кровотока в сосудах, подвижность бактерий и т.д.

Квазиупругое рассеяние. При таком рассеянии происходит незначительное изменение длины волны зондирующего ЛИ. Причина этого - изменение в процессе измерения рассеивающих свойств (конфигурации, конформации частиц). Временные изменения параметров рассеивающей поверхности проявляются в изменении спектра рассеяния по сравнению со спектром подающего излучения (спектр рассеяния либо уширяется, либо в нем появляются дополнительные максимумы). Данный метод позволяет получать информацию о меняющихся характеристиках рассеивателей: коэффициенте диффузии, скорости направленного транспорта, размерах. Так осуществляется диагностика макромолекул белков.

Лазерная масс-спектроскопия. Этот метод используют для исследования химического состава объекта. Мощные пучки лазерного излучения испаряют вещество с поверхности биообъекта. Пары подвергают масс-спектральному анализу, по результатам которого судят о составе вещества.

Лазерный анализ крови. Лазерный луч, пропускаемый через узкий кварцевый капилляр, по которому прокачивается специально обработанная кровь, вызывает флуоресценцию ее клеток. Флуоресцентное свечение затем улавливается чувствительным датчиком. Это свечение специфично для каждого типа клеток, проходящих поодиночке через сечение лазерного луча. Подсчитывается общее число клеток в заданном объеме крови. Определяются точные количественные показатели по каждому типу клеток.

Метод фоторазрушения. Его используют для исследования поверхностного состава объекта. Мощные пучки ЛИ позволяют брать микропробы с поверхности биообъектов путем испарения вещества и последующего масс-спектрального анализа этого пара.

Использование лазерного излучения в терапии

В терапии используются низкоинтенсивные лазеры (интенсивность 0,1-10 Вт/см 2). Низкоинтенсивное излучение не вызывает заметного деструктивного действия на ткани непосредственно во время облучения. В видимой и ультрафиолетовой областях спектра эффекты облучения обусловлены фотохимическими реакциями и не отличаются от эффектов, вызываемых монохроматическим светом, полученным от обычных некогерентных источников. В этих случаях лазеры являются просто удобными монохроматическими источниками света, обеспечи-

Рис. 31.8. Схема применения лазерного источника для внутрисосудистого облучения крови

вающими точную локализацию и дозировку воздействия. В качестве примера на рис. 31.8 приведена схема использования источника лазерного излучения для внутрисосудистого облучения крови у больных с сердечной недостаточностью.

Ниже указаны наиболее распространенные методы лазеротерапии.

Терапия с помощью красного света. Излучение Не-Ne лазера с длиной волны 632,8 нм используется с противовоспалительной целью для лечения ран, язв, ишемической болезни сердца. Лечебный эффект связан с влиянием света этой длины волны на пролиферативную активность клетки. Свет выступает в роли регулятора клеточного метаболизма.

Терапия с помощью синего света. Лазерное излучение с длиной волны в синей области видимого света используется, например, для лечения желтухи новорожденных. Это заболевание - следствие резкого возрастания в организме концентрации билирубина, который имеет максимум поглощения в синей области. Если облучать детей лазерным излучением такого диапазона, то билирубин распадается, образуя водорастворимые продукты.

Лазерофизиотерапия - использование лазерного излучения при сочетании с различными методами электрофизиотерапии. Некоторые лазеры имеют магнитные насадки для сочетанного действия лазерного излучения и магнитного поля - магнитолазеротерапии. К ним относится магнито-инфракрасный лазерный терапевтический аппарат «Мильта».

Эффективность лазеротерапии увеличивается при сочетанном воздействии с лекарственными веществами, предварительно нанесенными на облучаемую зону (лазерофорез).

Фотодинамическая терапия опухолей. Фотодинамическая терапия (ФДТ) используется для удаления опухолей, доступных для облучения светом. ФДТ основана на применении локализующихся в опухолях фотосенсибилизаторов, повышающих чувствительность тканей при их

последующем облучении видимым светом. Разрушение опухолей при ФДТ основано на трех эффектах: 1) прямое фотохимическое уничтожение клеток опухоли; 2) повреждение кровеносных сосудов опухоли, приводящее к ишемии и гибели опухоли; 3) возникновение воспалительной реакции, мобилизирующей противоопухолевую иммунную защиту тканей организма.

Для облучения опухолей, содержащих фотосенсибилизаторы, используется лазерное излучение с длиной волны 600-850 нм. В этой области спектра глубина проникновения света в биологические ткани максимальна.

Фотодинамическая терапия применяется при лечении опухолей кожи, внутренних органов: легких, пищевода (при этом к внутренним органам лазерное излучение доставляется с помощью световодов).

Использование лазерного излучения в хирургии

В хирургии высокоинтенсивные лазеры используются для рассечения тканей, удаления патологических участков, остановки кровотечения, сваривания биотканей. Выбирая должным образом длину волны излучения, его интенсивность и длительность воздействия, можно получать различные хирургические эффекты. Так, для разрезания биологических тканей используется сфокусированный луч непрерывного СО 2 -лазера, имеющего длину волны λ = 10,6 мкм, мощность 2х10 3 Вт/см 2 .

Применение лазерного луча в хирургии обеспечивает избирательное и контролируемое воздействие. Лазерная хирургия имеет ряд преимуществ:

Бесконтактность, дающую абсолютную стерильность;

Селективность, позволяющую выбором длины волны излучения дозированно разрушать патологические ткани, не затрагивая окружающие здоровые ткани;

Бескровность (за счет коагуляции белков);

Возможность микрохирургических воздействий, благодаря высокой степени фокусировки луча.

Укажем некоторые области хирургического применения лазеров.

Лазерная сварка тканей. Соединение рассеченных тканей представляет собой необходимый этап многих операций. На рисунке 31.9 показано, как сваривание одного из стволов крупного нерва осуществляется в контактном режиме с использованием припоя, который

Рис. 31.9. Сваривание нерва при помощи лазерного луча

каплями из пипетки подается по месту лазирования.

Разрушение пигментированных участков. Лазеры, работающие в импульсном режиме, используются для разрушения пигментированных участков. Данный метод (фототермолиз) используется для лечения ангиом, татуировок, склеротических бляшек в кровеносных сосудах и т.п.

Лазерная эндоскопия. Внедрение эндоскопии произвело коренной переворот в оперативной медицине. Чтобы избежать больших открытых операций, лазерное излучение доставляется к месту воздействия с помощью волоконно-оптических световодов, которые позволяют подводить лазерное излучение к биотканям внутренних полых органов. При этом значительно снижается риск инфицирования и возникновения послеоперационных осложнений.

Лазерный пробой. Короткоимпульсные лазеры в сочетании со световодами применяют для удаления бляшек в сосудах, камней в желчном пузыре и почках.

Лазеры в офтальмологии. Использование лазеров в офтальмологии позволяет выполнять бескровные оперативные вмешательства без нарушения целостности глазного яблока. Это операции на стекловидном теле; приваривание отслоившейся сетчатки; лечение глаукомы путем «прокалывания» лазерным лучом отверстий (диаметром 50÷100 мкм) для оттока внутриглазной жидкости. Послойная абляция тканей роговицы применяется при коррекции зрения.

31.8. Основные понятия и формулы

Окончание таблицы

31.9. Задачи

1. В молекуле фенилаланина разница энергий в основном и возбужденном состояниях составляет ΔЕ = 0,1 эВ. Найти соотношение между заселенностями этих уровней при Т = 300 К.

Ответ: n = 3,5*10 18 .

Свойства лазерного излучения позволяют применять его в разных сферах жизни человека. В медицине и косметологии лазером лечат большое количество заболеваний и эстетических недостатков.

С помощью скальпеля лазерного типа врач создает бескровные разрезы, что обеспечивается моментальным спаиванием капилляров и кровеносных сосудов. Кроме того, пользуясь подобным инструментарием у специалиста есть возможность видеть всю рабочую зону. Лазерный пучок рассекает кожный покров удаленно, не имея прямого контакта с сосудами и органами.

При этом достигается стерильность. Высокая концентрация лазера дает возможность производить хирургические вмешательства с минимальными показателями травматизации. Больные после таких операций намного быстрее восстанавливаются, то есть трудоспособность возвращается намного быстрее. Кроме того, манипуляции лазерным скальпелем не приносят никакого дискомфорта после операции.

Активное технологическое развитие существенно расширилось возможности использования лазерного излучения. Ученые выявили положительное воздействие и на состояние кожного покрова. По этой причине лазер сегодня часто используют в дерматологии и косметологии.

Реакция и степень поглощения лучей кожным покровом зависят от его типа. Лазерные приборы позволяют регулировать длину волы для каждой отдельной ситуации. Применение:

Одной из самых первых отраслей, где начал активно применяться лазер, является офтальмология. Глазная микрохирургия выделяет следующие направления, при которых используется этот вид облучения:

Помимо всего прочего, лазер применяется и при онкологических патологиях кожного покрова. Очень хорошие результаты он демонстрирует при устранении меланобластомы. В некоторых случаях лазерная технология применяется для терапии рака ЖКТ начальных стадий. Однако лазер не эффективен при наличии метастаз и глубокой локализации злокачественного образования.

Опасность для организма

Негативное влияние лазерного излучения на организм человека уже давным-давно доказано. Облучение бывает отраженным, рассеянным и прямым. Пагубное влияние обусловлено термическими и световыми свойствами лазера. Интенсивность поражения определяется уровнем поглощения тканей, длиной волны и участком, на который направлено воздействие.

Больше остальных частей тела от лазера могут пострадать глазные яблоки. Роговица крайне чувствительна, потому она запросто получает ожоги. Из последствий можно выделить резкое снижение зрительной функции или абсолютную слепоту. Источниками излучения, как правило, являются инфракрасные лазерные излучатели. При поражении хрусталика, роговицы, сетчатки или радужки лазерным лучом могут наблюдаться следующие признаки:

  • спазмы и боли в глазном яблоке;
  • помутнение глазного хрусталика;
  • кровоизлияния и отечность век.

Уязвима и человеческая кожа. В месте ее контакта с лазерным лучом увеличивается температура. Межтканевая и внутриклеточная жидкости начинают быстро закипать и испаряться. На кожном покрове появляется краснота. Через некоторое время на обожженном участке могут возникнуть омертвевшие участки. При мощном воздействии кожа обугливается практически мгновенно. Самый главный признак ожога лазером - строгие контуры поражения, а пузырьки формируются не под эпидермисом, а в нем.

Инфракрасный лазер способен поразить не только кожный покров, но и внутренние органы, так как проникает через ткани. Для глубокого ожога характерна очередность поврежденной и здоровой ткани. В первое время после пагубного воздействия у человека нет никакого дискомфорта и боли. Самым уязвимым внутренним органом считается печень.

Кроме того, влияние лазера на организм человека вызывает расстройства ССС и ЦНС (сердечно-сосудистой и центральной нервной системы соответственно). У пострадавшего при этом могут наблюдаться обильная потливость, замедление сердечного ритма, скачки давления и чувство раздражительности.

Меры защиты и предосторожности

В группу риска входят люди, работа которых предполагает использование квантовых генераторов. Санитарные нормативы разделяют опасность лазерного излучения на четыре класса. Для человеческого организма могут представлять опасность все классы, кроме первого. К техническим вариантам защиты относятся:

  • грамотное обустройство помещений промышленного назначения и правильный выбор внутренней облицовки (лазер не должен отражаться от поверхностей);
  • рациональная установка приборов-излучателей;
  • ограждение участка, который подвергается облучению;
  • соблюдение требований по эксплуатации и обслуживанию лазерных установок.

Другие меры защиты - индивидуальные. Она предполагает применение защитных очков, спецодежды, экранов, кожухов, призм и линз.

Бытовое применение лазера тоже может представлять опасность для человеческого организма. Несоблюдение инструкции может привести к очень печальным последствиям. Защита в этом случае предполагает следующие рекомендации:

Лазер может иметь механическое, фотохимическое, энергетическое или тепловое воздействие. Это зависит от типа используемого излучателя. Самым опасным считается прямое лазерное излучение, так как он имеет максимальную интенсивность. Думая о том, вреден ли лазер для здоровья, следует запомнить, что нерациональное использование самодельных лазерных устройств, фонариков или световых указов может причинить вред не только владельцу, но и окружающим.