Хорды пересекаются под прямым углом. Справочник репетитора по математике. Свойства окружности и ее элементов. Теорема о дугах, стягиваемых равными хордами

Вписанная и описанная окружности

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Теорема 2. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам треугольника

2.Теоремы (свойства параллелограмма):

· В параллелограмме противоположные стороны равны и противоположные углы равны: , , , .

· Диагонали параллелограмма точкой пересечения делятся пополам: , .

· Углы, прилежащие к любой стороне, в сумме равны .

· Диагонали параллелограмма делят его на два равных треугольника.

· Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: .

Признаки параллелограмма:

· Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник - параллелограмм.

· Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник - параллелограмм.

· Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник - параллелограмм.

· Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.

· Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника являются вершинами параллелограмма Вариньона .

· Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника . Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника

3. Трапеция - четырехугольник, у которого две стороны параллельны, а две стороны не параллельны. Параллельные стороны называются основаниями трапеции , две другие - боковыми сторонами .

Высота трапеции - расстояние между прямыми, на которых лежат основания трапеции, любой общий перпендикуляр этих прямых.

Средняя линия трапеции - отрезок, соединяющий середины боковых сторон.

Свойство трапеции:

Если в трапецию вписана окружность, то сумма оснований равна сумме боковых сторон: , а средняя линия - полусумме боковых сторон: .

Равнобедренная трапеция - трапеция, у которой боковые стороны равны . Тогда равны диагонали и углы при основании , .

Из всех трапеций только около равнобедренной трапеции можно описать окружность, так как окружность можно описать около четырехугольника, только если сумма противоположных углов равна .

В равнобедренной трапеции расстояние от вершины одного основания, до проекции противоположной вершины на прямую, содержащую это основание равно средней линии.

Прямоугольная трапеция - трапеция, у которой один из углов при основании равен .

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Доказательство. Пусть E - точка пересечения хорд AB и CD (рис. 110). Докажем, что AE * BE = CE * DE.

Рассмотрим треугольники ADE и CBE. Их углы A и C равны, так как они вписанные и опираются на одну и ту же дугу BD. По аналогичной причине ∠D = ∠B. Поэтому треугольники ADE и CBE подобны (по второму признаку подобия треугольников). Таким образом, DE/BE = AE/CE, или

AE * BE = CE * DE.

Теорема доказана.

5. Прямоугольником могут быть параллелограмм, квадрат или ромб.

1. Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны:

AB = CD, BC = AD

2. Противоположные стороны прямоугольника параллельны:

3. Прилегающие стороны прямоугольника всегда перпендикулярны:

AB ┴ BC, BC ┴ CD, CD ┴ AD, AD ┴ AB

4. Все четыре угла прямоугольника прямые:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

5. Сумма углов прямоугольника равна 360 градусов:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

6. Диагонали прямоугольника имеют одинаковой длины:

7. Сумма квадратов диагонали прямоугольника равны сумме квадратов сторон:

2d 2 = 2a 2 + 2b 2

8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.

9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам:

AO = BO = CO = DO =

10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности

11. Диагональ прямоугольника является диаметром описанной окружности

12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов:

∠ABC = ∠CDA = 180° ∠BCD = ∠DAB = 180°

13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника - квадрат).

6. Теорема Фалеса

Если на одной из двух прямых отложить последовательно несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки

Обратная теорема Фалеса

Если прямые, пересекающие две другие прямые (параллельные или нет), отсекают на обеих из них равные (или пропорциональные) между собой отрезки, начиная от вершины, то такие прямые параллельны

\[{\Large{\text{Центральные и вписанные углы}}}\]

Определения

Центральный угол – это угол, вершина которого лежит в центре окружности.

Вписанный угол – это угол, вершина которого лежит на окружности.

Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.

Теорема

Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Доказательство

Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка \(B\) – вершина вписанного угла \(ABC\) и \(BC\) – диаметр окружности:

Треугольник \(AOB\) – равнобедренный, \(AO = OB\) , \(\angle AOC\) – внешний, тогда \(\angle AOC = \angle OAB + \angle ABO = 2\angle ABC\) , откуда \(\angle ABC = 0,5\cdot\angle AOC = 0,5\cdot\buildrel\smile\over{AC}\) .

Теперь рассмотрим произвольный вписанный угол \(ABC\) . Проведём диаметр окружности \(BD\) из вершины вписанного угла. Возможны два случая:

1) диаметр разрезал угол на два угла \(\angle ABD, \angle CBD\) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.

2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла \(\angle ABD, \angle CBD\) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.


Следствия

1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

2. Вписанный угол, опирающийся на полуокружность, прямой.

3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

\[{\Large{\text{Касательная к окружности}}}\]

Определения

Существует три типа взаимного расположения прямой и окружности:

1) прямая \(a\) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние \(d\) от центра окружности до прямой меньше радиуса \(R\) окружности (рис. 3).

2) прямая \(b\) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка \(B\) – точкой касания. В этом случае \(d=R\) (рис. 4).


Теорема

1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.

Следствие

Отрезки касательных, проведенных из одной точки к окружности, равны.

Доказательство

Проведем к окружности из точки \(K\) две касательные \(KA\) и \(KB\) :


Значит, \(OA\perp KA, OB\perp KB\) как радиусы. Прямоугольные треугольники \(\triangle KAO\) и \(\triangle KBO\) равны по катету и гипотенузе, следовательно, \(KA=KB\) .

Следствие

Центр окружности \(O\) лежит на биссектрисе угла \(AKB\) , образованного двумя касательными, проведенными из одной точки \(K\) .

\[{\Large{\text{Теоремы, связанные с углами}}}\]

Теорема об угле между секущими

Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

Доказательство

Пусть \(M\) – точка, из которой проведены две секущие как показано на рисунке:


Покажем, что \(\angle DMB = \dfrac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) .

\(\angle DAB\) – внешний угол треугольника \(MAD\) , тогда \(\angle DAB = \angle DMB + \angle MDA\) , откуда \(\angle DMB = \angle DAB - \angle MDA\) , но углы \(\angle DAB\) и \(\angle MDA\) – вписанные, тогда \(\angle DMB = \angle DAB - \angle MDA = \frac{1}{2}\buildrel\smile\over{BD} - \frac{1}{2}\buildrel\smile\over{CA} = \frac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) , что и требовалось доказать.

Теорема об угле между пересекающимися хордами

Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: \[\angle CMD=\dfrac12\left(\buildrel\smile\over{AB}+\buildrel\smile\over{CD}\right)\]

Доказательство

\(\angle BMA = \angle CMD\) как вертикальные.


Из треугольника \(AMD\) : \(\angle AMD = 180^\circ - \angle BDA - \angle CAD = 180^\circ - \frac12\buildrel\smile\over{AB} - \frac12\buildrel\smile\over{CD}\) .

Но \(\angle AMD = 180^\circ - \angle CMD\) , откуда заключаем, что \[\angle CMD = \frac12\cdot\buildrel\smile\over{AB} + \frac12\cdot\buildrel\smile\over{CD} = \frac12(\buildrel\smile\over{AB} + \buildrel\smile\over{CD}).\]

Теорема об угле между хордой и касательной

Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.

Доказательство

Пусть прямая \(a\) касается окружности в точке \(A\) , \(AB\) – хорда этой окружности, \(O\) – её центр. Пусть прямая, содержащая \(OB\) , пересекает \(a\) в точке \(M\) . Докажем, что \(\angle BAM = \frac12\cdot \buildrel\smile\over{AB}\) .


Обозначим \(\angle OAB = \alpha\) . Так как \(OA\) и \(OB\) – радиусы, то \(OA = OB\) и \(\angle OBA = \angle OAB = \alpha\) . Таким образом, \(\buildrel\smile\over{AB} = \angle AOB = 180^\circ - 2\alpha = 2(90^\circ - \alpha)\) .

Так как \(OA\) – радиус, проведённый в точку касания, то \(OA\perp a\) , то есть \(\angle OAM = 90^\circ\) , следовательно, \(\angle BAM = 90^\circ - \angle OAB = 90^\circ - \alpha = \frac12\cdot\buildrel\smile\over{AB}\) .

Теорема о дугах, стягиваемых равными хордами

Равные хорды стягивают равные дуги, меньшие полуокружности.

И наоборот: равные дуги стягиваются равными хордами.

Доказательство

1) Пусть \(AB=CD\) . Докажем, что меньшие полуокружности дуги .


По трем сторонам, следовательно, \(\angle AOB=\angle COD\) . Но т.к. \(\angle AOB, \angle COD\) - центральные углы, опирающиеся на дуги \(\buildrel\smile\over{AB}, \buildrel\smile\over{CD}\) соответственно, то \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) .

2) Если \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) , то \(\triangle AOB=\triangle COD\) по двум сторонам \(AO=BO=CO=DO\) и углу между ними \(\angle AOB=\angle COD\) . Следовательно, и \(AB=CD\) .

Теорема

Если радиус делит хорду пополам, то он ей перпендикулярен.

Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.


Доказательство

1) Пусть \(AN=NB\) . Докажем, что \(OQ\perp AB\) .

Рассмотрим \(\triangle AOB\) : он равнобедренный, т.к. \(OA=OB\) – радиусы окружности. Т.к. \(ON\) – медиана, проведенная к основанию, то она также является и высотой, следовательно, \(ON\perp AB\) .

2) Пусть \(OQ\perp AB\) . Докажем, что \(AN=NB\) .

Аналогично \(\triangle AOB\) – равнобедренный, \(ON\) – высота, следовательно, \(ON\) – медиана. Следовательно, \(AN=NB\) .

\[{\Large{\text{Теоремы, связанные с длинами отрезков}}}\]

Теорема о произведении отрезков хорд

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Доказательство

Пусть хорды \(AB\) и \(CD\) пересекаются в точке \(E\) .

Рассмотрим треугольники \(ADE\) и \(CBE\) . В этих треугольниках углы \(1\) и \(2\) равны, так как они вписанные и опираются на одну и ту же дугу \(BD\) , а углы \(3\) и \(4\) равны как вертикальные. Треугольники \(ADE\) и \(CBE\) подобны (по первому признаку подобия треугольников).

Тогда \(\dfrac{AE}{EC} = \dfrac{DE}{BE}\) , откуда \(AE\cdot BE = CE\cdot DE\) .

Теорема о касательной и секущей

Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

Доказательство

Пусть касательная проходит через точку \(M\) и касается окружности в точке \(A\) . Пусть секущая проходит через точку \(M\) и пересекает окружность в точках \(B\) и \(C\) так что \(MB < MC\) . Покажем, что \(MB\cdot MC = MA^2\) .


Рассмотрим треугольники \(MBA\) и \(MCA\) : \(\angle M\) – общий, \(\angle BCA = 0,5\cdot\buildrel\smile\over{AB}\) . По теореме об угле между касательной и секущей, \(\angle BAM = 0,5\cdot\buildrel\smile\over{AB} = \angle BCA\) . Таким образом, треугольники \(MBA\) и \(MCA\) подобны по двум углам.

Из подобия треугольников \(MBA\) и \(MCA\) имеем: \(\dfrac{MB}{MA} = \dfrac{MA}{MC}\) , что равносильно \(MB\cdot MC = MA^2\) .

Следствие

Произведение секущей, проведённой из точки \(O\) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки \(O\) .

Муниципальное автономное общеобразовательное учреждение

средняя общеобразовательная школа № 45

Разработка урока по теме

«Теорема об отрезках пересекающихся хорд»,

геометрия, 8 класс.

первой категории

МАОУ СОШ №45 г. Калининграда

Борисова Алла Николаевна.

г. Калининград

2016 – 2017 учебный год

Образовательное учреждение – муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 45 города Калининграда

Предмет – математика (геометрия)

Класс – 8

Тема «Теорема об отрезках пересекающихся хорд»

Учебно-методическое обеспечение:

    Геометрия, 7 - 9: учебник для общеобразовательных учреждений/ Л. С. Атанасян и др., - 17 - е изд., - М.: Просвещение, 2015 г.

    Рабочая тетрадь «Геометрия, 8 класс», авторы Л. С. Атанасян, В. Ф. Бутузов, Ю.А. Глазков, И.И. Юдина/ учебное пособие для учащихся общеобразовательных учреждений/ - М. Просвещение, 2016 г.

Данные о программах, в которых выполнена мультимедийная составляющая работы - Microsoft Office Power Point 2010

Цель: познакомиться с теоремой об отрезках пересекающихся хорд и сформировать навыки по её применению для решения задач.

Задачи урока:

Образовательные:

    систематизировать теоретические знания по теме: “Центральные и вписанные углы” и совершенствовать навыки решения задач по данной теме;

    сформулировать и доказать теорему об отрезках пересекающихся хорд;

    применить теорему при решении геометрических задач;

Развивающие:

    развитие познавательного интереса к предмету.

    формирование ключевых и предметных компетентностей.

    развитие творческих способностей.

    развивать у учащихся навыки самостоятельной работы и работы в парах.

Воспитательные:

    воспитание познавательной активности, культуры общения, ответственности, самостоятельное развитие зрительной памяти;

    воспитывать у учащихся самостоятельность, любознательность, сознательное отношение к изучению математики;

    обоснование выбора методов, средств и форм обучения;

    оптимизировать обучение путем разумного сочетания и соотношения методов, средств и форм, направленных на получение высокого результата за время урока.

Оборудование и материалы для урока : проектор, экран, презентация для сопровождения урока.

Тип урока: комбинированный.

Структура урока:

1) Учащимся сообщается тема урока и цели, подчеркивается актуальность данной темы (слайд №1).

2) Объявляется план урока.

1. Проверка домашнего задания.

2. Повторение.

3. Открытие нового знания.

4. Закрепление.

II . Проверка домашнего задания.

1) три ученика доказывают самостоятельно на доске теорему о вписанном угле.

Первый ученик – случай 1;
Второй ученик – случай 2;
Третий ученик – случай 3.

2) Остальные работают в это время устно с целью повторения пройденного материала.

1. Теоретический опрос (фронтально) (слайд №2) .

Закончите предложение:

Угол называется центральным, если …

Угол называется вписанным, если …

Центральный угол измеряется …

Вписанный угол измеряется …

Вписанные углы равны, если …

Вписанный угол, опирающийся на полуокружность …

2. Решение задач на готовых чертежах (слайд №3) .

Учитель в это время индивидуально проверяет решение домашнего задания у некоторых учеников.

Доказательство теорем заслушивается всем классом после проверки правильности решений задач на готовых чертежах.

II I. Введение нового материала.

1) Работа в парах. Решить задачу 1 с целью подготовки учащихся к восприятию нового материала (слайд №4).

2) Доказательство теоремы об отрезках пересекающихся хорд проводим в виде задачи (слайд №5).

Вопросы для обсуждения (слайд №6) :

Что вы можете сказать об углах CAB и CDB?

Об углах AEC и DEB ?

Какими являются треугольники ACE и DBE?

Чему равно отношение их сторон, являющихся отрезками хорд касательных?

Какое равенство можно записать из равенства двух отношений, используя основное свойство пропорции?

Попробуйте сформулировать утверждение, которое вы доказали. На доске и в тетрадях записать формулировку и конспект доказательства теоремы об отрезках пересекающихся хорд. К доске вызывается один человек (слайд №7).

I V. Физкультминутка.

Один учащийся выходит к доске и предлагает простые упражнения для шеи, рук и спины.

V . Закрепление изученного материала.

1) Первичное закрепление.

1 уч-ся с комментированием решает № 667 на доске

Решение .

1) АВА 1 – прямоугольный, так как вписанный угол А 1 ВА опирается на полуокружность.

2) 5 = 3 как вписанные и опирающиеся на одну дугу АВ 1 .

3) 1 = 90° – 5, 4 = 90°– 3, но 3 = 5, поэтому 1= 4.

4) А 1 ВВ 1 – равнобедренный, тогда ВС = В 1 С .

5) По теореме о произведении отрезков пересекающихся хорд

АС · А 1 С = ВС · В 1 С.

6) (см);

Ответ:

2) Самостоятельное решение задач.

1. 1 - ая группа учащихся («слабые» учащиеся). Решают самостоятельно № 93, 94 («Рабочая тетрадь», авт. Л.С. Атанасян, 2015 г), учитель при необходимости консультирует учащихся, анализирует результаты выполнения учащимися заданий

2. 2 - ая группа учащихся (остальные учащиеся). Работа над нестандартной задачей. Работают самостоятельно (по необходимости пользуются помощью учителя или соседа по парте). Один учащийся работает на откидной доске. После окончания работы взаимопроверка .

Задача .
Хорды
АВ и СD пересекаются в точке S , при чем AS:SB = 2:3, DS = 12 см, SC = 5см , найти АВ .
Решение .

Поскольку соотношение
AS:SB = 2:3 , то пусть длина AS = 2x, SB = 3x
Согласно свойству хорд
AS ∙ SB = CS ∙ SD , тогда
2х ∙ 3х = 5 ∙ 12
2 = 60
х
2 = 10
x = √10.

Откуда
AB = AS + SB
AB = 2√10 + 3√10= 5√10
Ответ : 5√10

VI . Подведение итогов урока, рефлексия деятельности

Подведение итогов урока, мобилизация учащихся на самооценку своей деятельности;

Итак, что вы узнали сегодня на уроке?

Чему научились сегодня на уроке?

Оцени свою деятельность за урок по 5 – бальной системе.

Выставление отметок за урок.

VIII . Домашнее задание

п. 71 (выучить теорию),

659, 661, 666 (б, в).

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD

Часть 3. Окружности

I . Справочные материалы.

I . Свойства касательных, хорд и секущих. Вписанные и центральные углы.

Окружность и круг

1.Если из одной точки, лежащей вне окружности, провести к ней две касательные, то

а)длины отрезков от данной точки до точек касания равны;

б)углы между каждой касательной и секущей, проходящей через центр круга, равны.

2. Если из одной точки, лежащей вне окружности, провести к ней касательную и секущую, то квадрат касательной равен произведению секущей на ее внешнюю часть

3. Если две хорды пересекаются в одной точке, то произведение отрезков одной хорды равно произведению отрезков другой.

4. Длина окружности С=2πR;

5. Длина дуги L =πRn/180˚

6. Площадь круга S=πR 2

7. Площадь сектора S c =πR 2 n/360

Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Теорема 1. Мера угла между касательной и хордой, имеющими общую точку на окружности, равна половине градусной меры дуги, заключенной между его сторонами

Теорема 2 (о касательной и секущей). Если из точки М к окружности проведены касательная и секущая, то квадрат отрезка касательной от точки М до точки касания равен произведению длин отрезков секущей от точки М до точек её пересечения с окружностью.

Теорема 3 . Если две хорды окружности пересекаются, то произведение длин отрезков одной хорды равно произведению длин отрезков другой хорды, то есть если хорды АВ и СД пересекаются в точке М, то АВ МВ = СМ МД.

Свойства хорд окружности:

Диаметр, перпендикулярный хорде, делит её пополам. Обратно: диаметр, проходящий через середину хорды, перпендикулярен ей.

Равные хорды окружности находятся на равном расстоянии от центра окружности. Обратно: на равного расстоянии от центра окружности находятся равные хорды.

Дуги окружности, заключённые между параллельными хордами равны.

окружности, имеющие общую точку и общую касательную в этой точке, называются)касающимися Если окружности расположены по одну сторону от общей касательной, то они называются касающимися внутренне., а если по разные стороны от касательной, то они называются касающимися внешне.

II . Дополнительные материалы

Свойства некоторых углов.

Теорема.

1) Угол (АВС), вершина ко­торого лежит внутри круга, является полусуммой двух дуг (АС И DE), из которых одна заключена между его сторонами, а другая - между продолжениями сторон.

2) угол (АВС), вершина которого лежит вне круга и стороны пересекаются с окружностью, является полуразностью двух дуг (АС и ED), заключенных между его сторонами

Доказательство.

Проведя хорду АD (на том и на другом чертеже), мы получим ∆АВD,

относительно которого рассматриваемый угол АВС служит внешним, когда его вершина лежит внутри кру­га, и внутренним, когда его вер­шина лежит вне круга. Поэтому в первом случае: ; во втором случае:

Но углы АDС и DAE, как впи­санные, измеряются половинами дуг

АС и DE; поэтому угол АВС измеряется: в первом случае суммой: ½ ﬞ AС+1/2 ﬞ DE, которая равна 1 / 2 (AC+ DE), а во втором случае разностью 1 / 2 ﬞ AС­- 1 / 2 ﬞ DE, которая равна 1 / 2 (ﬞ AC- ﬞ DE).

Теорема . Угол (АCD), состав­ленный касательной и хордой, измеряется половиной ду­ги, заключенной внутри него.

Предположим сначала, что хорда СD проходит через центр О, Т.е. что хорда есть диаметр. Тогда угол АС D - прямой и, следовательно, равен 90°. Но и половина дуги СmD также равна 90°, так как целая дуга СmD, составляя полуокружность, содержит 180°. Значит теорема оправдывается в этом частном случае..

Теперь возьмем общий случай, когда хорда СD не проходит через центр. Проведя тогда диаметр СЕ, мы будем иметь:

Угол ACE, как составленный касательной и диаметром, измеряется, по доказанному, половиной дуги CDE; Угол DCE, как вписанный, измеряется половиной дуги CnED: разница в доказательстве только та, что этот угол надо рассматривать не как разность, а как сумму прямого угла ВСЕ и острого угла ECD.

Пропорциональные линии в круге

Теорема. Если через точку (М), взятую внутри круга, проведена какая-нибудь хорда (АВ) и диа­метр (CD), то произведение отрезков хорды (АМ МВ) равно произведению отрезков диаметра (МВ МС).

Доказательство.

П
роведя две вспомогательные хорды АС и ВD, мы получим два треугольника АМС и MBD (покрытые на рисунке штрихами), которые подобны, так как у них углы А и D равны, как вписанные, опирающиеся на одну и ту же дугу ВС, углы С и В равны, как вписанные, опирающиеся на одну и ту же дугу AD. Из подобия треугольников выводим:

АМ: МD=МС: МВ, откуда АМ МВ=МD МС.

Следствие. Если через точку (М), взятую внутри круга, проведено сколько угодно хорд (АВ, EF, KL,...), то произведение отрезков каждой хорды есть число постоянное для всех хорд, так как для каждой корды это произведение равно произведению отрезков диаметра CD, проходящего через взятую точку М.

Теорема. Если из точки (М), взятой вне круга, проведены к нему какая-нибудь секущая (МА) и касательная (МС), то произведение секущей на ее внеш­нюю часть равно квадрату касательной (предполагается, что секущая ограничена второй точкой пересечения, а касательная - точкой касания).

Доказательство.

Проведем вспомогательные хорды АС и ВС; тогда получим два треугольника МАС и МВС (покрытые на рисунке штрихами), которые подобны, потому что у них угол М об­щий и углы МСВ и САВ равны, так как каждый из них из­меряется половиной дуги ВС. Возьмем в ∆МАС стороны МА и МС; сходственными сторонами в ∆МВС будут МС и МВ; поэтому МА: МС=МС: МВ, откуда МА МВ=МС 2 .

Следствие. Если из точки (М), взятой вне круга, проведено к нему сколько угодно секущих (МА, MD, МЕ,...), то произведение каждой секущей на ее внеш­нюю часть есть число постоянное для всех секущих, так как для каждой секущей это произведение равно квадрату касательной (МС 2), проведенной из точки М.

III . Вводные задачи.

Задача 1.

В равнобедренной трапеции с острым углом в 60° боковая сторона равна , а меньшее основание - . Найдите радиус окружности, описанной около этой трапеции.

Решение

1) Радиус окружности, описанной около трапеции, – одно и то же, что и радиус окружности, описанной около треугольника, вершинами которого являются любые три вершины трапеции. Найдем радиус R окружности, описанной около треугольника ABD .

2) ABCD – равнобедренная трапеция, поэтому AK = MD , KM =.

В ∆ABK AK = AB cos A = · cos 60° = . Значит,
AD = .

BK = AB sin A = · = .

3) По теореме косинусов в ∆ABD BD 2 = AB 2 + AD 2 – 2AB · AD cos A .

BD 2 = () 2 + (3) 2 – 2 · · 3 · = 21 + 9 · 21 – 3 · 21 = 7 · 21;
BD = .

4) S(∆ABD ) = AD · BK ; S(∆ABD ) = · · 3 = .


Задача 2.

В равносторонний треугольник ABC вписана окружность и проведен отрезок NM ,

M AC , N BC , который касается ее и параллелен стороне AB .

Определите периметр трапеции AMNB , если длина отрезка MN равна 6.

Решение.

1) ∆ABC – равносторонний, точка O – точка пересечения медиан (биссектрис, высот), значит, CO : OD = 2 : 1.

2) MN – касательная к окружности, P – точка касания, значит, OD =
= OP , тогда CD = 3 · CP .

3) ∆CMN ∾ ∆CAB , значит, ∆CMN – равносторонний CM = CN = MN = = 6; P .

А так же

3) BN = CB CN = 18 – 6 = 12.

4) P (AMNB ) = AM + MN + BN + AB = 18 + 6 + 12 + 12 = 48.

Около окружности описана равнобокая трапеция, средняя линия которой равна 5, а синус острого угла при основании равен 0,8. Найдите площадь трапеции.

Решение. Так как окружность вписана в четырехугольник, то BC + AD = AB + CD . Этот четырехугольник – равнобокая трапеция, значит BC + AD = 2AB .

FP – средняя линия трапеции, значит, BC + AD = 2FP .

Тогда AB = CD = FP = 5.

ABK – прямоугольный, BK = AB sin A ; BK = 5 · 0,8 = 4.

S (ABCD ) = FP · BK = 5 · 4 = 20.

Ответ : 20.

Вписанная окружность треугольника АВС касается стороны ВС в точке К, а вневписанная – в точке L. Докажите, что CK=BL=(a+b+c)/2

Доказательство: пусть М и N –точки касания вписанной окружности со сторонами АВ и ВС. Тогда BK+AN=BM+AM=AB, поэтому СК+CN= a+b-c.

Пусть Р и Q – точки касания вневписанной окружности с продолжениями сторон АВ и ВС. Тогда АР=АВ+ВР=АВ+ВL и AQ=AC+CQ=AC+CL. Поэтому AP+AQ=a+b+c. Следовательно, BL=BP=AP-AB=(a+b-c)/2.

а) Продолжение биссектрисы угла В треугольника АВС пересекает описанную окружность в точке М. О - центр вписанной окружности. О В –центр вневписанной окружности, касающейся стороны АС. Докажите, что точки А, С, О и O В лежат на окружности с центром М.

Д
оказательство: Так как

б) Точка О, лежащая внутри треугольника АВС, обладает тем свойством, что прямые АО, ВО, СО проходят через центры описанных окружностей треугольников ВСО, АСО, АВО. Докажите, что О – центр вписанной окружности треугольника АВС

Доказательство: Пусть Р- центр описанной окружности треугольника АСО. Тогда

IV . Дополнительные задачи

№1. Окружность, касающаяся гипотенузы прямоугольного треугольника и продолжений его катетов, имеет радиус R. Найдите периметр треугольника

Решение: HOGB- квадрат со стороной R

1) ∆OAH =∆OAF по катету и гипотенузе =>HA=FA

2) ∆OCF=∆OCG =>CF=CG

3) P ABC =AB+AF+FC+BC=AB+AM+GC+BC+BH+BG=2R

№2. Точки C и D лежат на окружности с диаметром АВ. АС ∩ BD = Р, а AD ∩ BC = Q. Докажите, что прямые AB и PQ перпендикулярны

Доказательство: AD – диаметр => вписанный угол ADB=90 o (как опирающийся на диаметр)=> QD/QP=QN/QA; ∆QDP подобен ∆QNA по 2м сторонам и углу между ними=> QN перпендикулярна AB .

№3. В параллелограмме ABCD диагональ AC больше диагонали BD; М – точка диагонали AC, BDCM – вписанный четырехугольник.. Докажите, что прямая BD является общей касательной к описанным окружностям треугольников ABM и ADM

П
усть О – точка пересечения диагоналей АС и ВD. Тогда MO· OC=BO· ОD. Тогда как ОС=ОА и ВО=ВD, то МО· ОА=ВО 2 и МО· ОА=DO 2 . Эти равенства означают, что ОВ касается описанной окружности треугольника ADM

№4. На основании АВ равнобедренного треугольника АВС взята точка Е, и в треугольники АСЕ и АВЕ вписаны окружности, касающиеся отрезка СЕ в точках М и N . Найдите длину отрезка MN, если известны длины АЕ и ВЕ.

Согласно вводной задаче 4 СМ=(АС+СЕ-АЕ)/2 и СN=(BC+CE-BE)/2. Учитывая, что АС=ВС, получаем МN=|CM-CN|=|AE-BE|/2

№5. Длины сторон треугольника АВС образуют арифметическую прогрессию, причем a

Пусть М середина стороны АС, N- точка касания вписанной окружности со стороной ВС. Тогда BN=р–b (вводная задача 4), поэтому BN=AM, т.к. p=3b/2 по условию. Кроме того,

V .Задачи для самостоятельного решения

№1. Четырехугольник ABCD обладает тем свойством, что существует окружность, вписанная в угол BAD и касающаяся продолжений сторон ВС и CD. Докажите, что AB+BC=AD+DC.

№2. Общая внутренняя касательная к окружностям с радиусами R и r пересекает их общие внешние касательные в точках А и В и касается одной из окружностей в точке С. Докажите, что АС∙CB=Rr

№3. В треугольнике АВC угол С прямой. Докажите, что r =(a+b-c)/2 и r c =(a+b+c)/2

№4. Две окружности пересекаются в точках А и В; MN – общая касательная к ним. Докажите, что прямая АВ делит отрезок MN пополам.

    №5. Продолжения биссектрис углов треугольника АВС пересекают описанную окружность в точках А 1 , В 1 , С 1 . М – точка пересечения биссектрис. Докажите, что:

а) MA·MC/MB 1 =2r;

b) MA 1 ·MC 1 /MB=R

№6. Угол, составленный двумя касательными, проведенными из одной точки окружности, равен 23 о 15`. Вычислить дуги, заключенные между точками касания

№7. Вычислить угол, составленный касательной и хордой, если хорда делит окружность на две части, относящиеся как 3:7.

VI. Контрольные задачи.

Вариант 1.

Точка М находится вне круга с центром О. Из точки М проведены три секущие: первая пересекает окружность в точках В и А (М-В-А), вторая – в точках D и C (М-D-C), а третья пересекает окружность в точках F и E (M-F-E) и проходит через центр окружности, АВ = 4, ВМ =5, FM = 3.

      Докажите, что если АВ = СD, то углы АМЕ и СМЕ равны.

      Найдите радиус окружности.

      Найдите длину касательной, проведенной из точки М к окружности.

      Найдите угол АЕВ.

Вариант 2.

АВ – диаметр окружности с центром О. Хорда ЕF пересекает диаметр в точке К (А-К-О), ЕК =4, КF = 6, ОК = 5.

    Найдите радиус окружности.

    Найдите расстояние от центра окружности до хорды ВF.

    Найдите острый угол между диаметром АВ и хордой EF.

    Чему равна хорда FМ, если ЕМ – параллельная АВ.

Вариант 3. В прямоугольный треугольник АВС (


Вариант 4.

АВ – диаметр окружности с центром О. Радиус этой окружности равен 4, О 1 – середина ОА. С центром в точке О 1 проведена окружность, касающаяся большей окружности в точке А. Хорда СD большей окружности перпендикулярна к АВ и пересекает АВ в точке К. Е и F –точки пересечения СD с меньшей окружностью (С-Е-К-F-D), АК=3.

    Найдите хорды АЕ и АС.

    Найдите градусную меру дуги АF и её длину.

    Найдите площадь части меньшего круга, отсеченной хордой ЕF.

    Найдите радиус окружности, описанной около треугольника АСЕ.