Аэробное окисление углеводов биохимия. Анаэробное окисление глюкозы. Цикл трикарбоновых кислот

Окисление глюкозы до СО 2 и Н 2 О (аэробный распад). Аэробный распад глюкозы можно выразить суммарным уравнением:

С 6 Н 12 О 6 + 6 О 2 > 6 СО 2 + Н 2 О + 2820 кДж/моль.

Этот процесс включает несколько стадий (рис. 7-33).

Аэробный гликолиз - процесс окисления глюкозы с образованием двух молекул пирувата;

Общий путь катаболизма, включающий превращение пирувата в ацетил-КоА и его дальнейшее окисление в цитратом цикле;

ЦПЭ на кислород, сопряжённая с реакциями дегидрирования, происходящими в процессе распада глюкозы.

В определённых ситуациях обеспечение кислородом тканей может не соответствовать их потребностям. Например, на начальных стадиях интенсивной мышечной работы при стрессе сердечные сокращения могут не достигать нужной частоты, а потребности мышц в кислороде для аэробного распада глюкозы велики. В подобных случаях включается процесс, который протекает без кислорода и заканчивается образованием лактата из пировиноградной кислоты. Этот процесс называют анаэробным распадом, или анаэробным гликолизом. Анаэробный распад глюкозы энергетически малоэффективен, но именно этот процесс может стать единственным источником энергии для мышечной клетки в описанной ситуации. В даньнейшем, когда снабжение мышц кислородом будет достаточным в результате перехода сердца на ускоренный ритм, анаэробный распад переключается на аэробный. Пути катаболизма глюкозы и их энергетический эффект показаны на рис. 7-34.

Б. Аэробный гликолиз

Аэробным гликолизом называют процесс окисления глюкозы до пировиноградной кислоты, протекающий в присутствии кислорода. Все ферменты, катализирующие реакции этого процесса, локализованы в цитозоле клетки.

1. Этапы аэробного гликолиза

В аэробном гликолизе можно выделить 2 этапа.

Подготовительный этап, в ходе которого глюкоза фосфорилируется и расщепляется на две молекулы фосфотриоз. Эта серия реакций протекает с использованием 2 молекул АТФ.

Этап, сопряжённый с синтезом АТФ. В результате этой серии реакций фосфотриозы превращаются в пируват. Энергия, высвобождающаяся на этом этапе, используется для синтеза 10 моль АТФ.

2. Реакции аэробного гликолиза

Превращение глюкозо-6-фосфата в 2 молекулы глицеральдегид-3-фосфата

Глюкозо-6-фосфат, образованный в результате фосфорилирования глюкозы с участием АТФ, в ходе следующей реакции превращается в фруктозо-6-фосфат. Эта обратимая реакция изомеризации протекает под действием фермента глюкозофосфатизомеразы.

Затем следует ещё одна реакция фосфорилирования с использованием фосфатного остатка и энергии АТФ. В ходе этой реакции, катализируемой фосфофруктокиназой, фруктозо-6-фосфат превращается в фруктозо-1,6-бисфосфат. Данная реакция, так же, как гексокиназная, практически необратима, и, кроме того, она наиболее медленная из всех реакций гликолиза. Реакция, катализируемая фосфофруктокиназой, определяет скорость всего гликолиза, поэтому, регулируя активность фосфофруктокиназы, можно изменять скорость катаболизма глюкозы.

Фруктозо-1,6-бисфосфат далее расщепляется на 2 триозофосфата: глицеральдегид-3-фосфат и дигидроксиацетонфосфат. Реакцию катализирует фермент фруктозобисфосфатальдолаза, или просто альдолаза. Этот фермент катализирует как реакцию альдольного расщепления, так и альдольной конденсации, т.е. обратимую реакцию. Продукты реакции альдольного расщепления - изомеры. В последующих реакциях гликолиза используется только глицеральдегид-3-фосфат, поэтому дигидроксиацетонфосфат превращается с участием фермента триозофосфатизомеразы в глицероальдегид-3-фосфат (рис. 7-35).

В описанной серии реакций дважды происходит фосфорилирование с использованием АТФ. Однако расходование двух молекул АТФ (на одну молекулу глюкозы) далее будет компенсировано синтезом большего количества АТФ.

Превращение глицеральдегид-3-фосфата в пируват

Эта часть аэробного гликолиза включает реакции, связанные с синтезом АТФ. Наиболее сложной в данной серии реакций является реакция превращения глицеральдегид-3-фосфата в 1,3-бисфосфоглицерат. Это превращение - первая реакция окисления в ходе гликолиза. Реакцию катализирует глицеральдегид-3-фосфатдегидрогеназа, которая является NAD-зависимым ферментом. Значение данной реакции заключается не только в том, что образуется восстановленный кофермент, окисление которого в дыхательной цепи сопряжено с синтезом АТФ, но также и в том, что свободная энергия окисления концентрируется в макроэргической связи продукта реакции. Глицеральдегид- 3 -фосфатдегидрогеназа содержит в активном центре остаток цистеина, сульфгидрильная группа которого принимает непосредственное участие в катализе. Окисление глицеральдегид-3-фосфата приводит к восстановлению NAD и образованию с участием Н3РО4 высокоэнергетической ангидридной связи в 1,3-бисфосфоглицерате в положении 1. В следующей реакции высокоэнергетический фосфат передаётся на АДФ с образованием АТФ. Фермент, катализирующий это превращение, назван по обратной реакции фосфоглицераткиназой (киназы называются по субстрату, находящемуся в уравнении реакции по одну сторону с АТФ). Данная серия реакций показана на рис. 7-36.

Образование АТФ описанным способом не связано с дыхательной цепью, и его называют субстратным фосфорилированием АДФ. Образованный 3-фосфоглицерат уже не содержит макроэргической связи. В следующих реакциях происходят внутримолекулярные перестройки, смысл которых сводится к тому, что низкоэнергетическийфосфоэфир переходит в соединение, содержащее высокоэнергетический фосфат. Внутримолекулярные преобразования заключаются в переносе фосфатного остатка из положения 3 в фосфоглицерате в положение 2. Затем от образовавшегося 2-фосфоглицерата отщепляется молекула воды при участии фермента енолазы. Название дегидратирующего фермента дано по обратной реакции. В результате реакции образуется замещённый енол - фосфоенолпируват. Образованный фосфоенолпируват - макроэргическое соединение, фосфатная группа которого переносится в следующей реакции на АДФ при участии пируваткиназы (фермент также назван по обратной реакции, в которой происходит фосфорилирование пирувата, хотя подобная реакция в таком виде не имеет места).

Превращение фосфоенолпирувата в пируват - необратимая реакция. Это вторая в ходе гликолиза реакция субстратного фосфорилирования. Образующаяся енольная форма пирувата затем неферментативно переходит в более термодинамически стабильную кетофор-му. Описанная серия реакций представлена на рис. 7-37.

Рис. 7-37. Превращение 3-фосфоглицерата в пируват.

Схема 10 реакций, протекающих при аэробном гликолизе, и дальнейшее окисление пирувата представлены на рис. 7-33.

Окисление цитоплазматического NADH в митохондриалъной дыхательной цепи. Челночные системы

NADH, образующийся при окислении глицеральдегид-3-фосфата в аэробном гликолизе, подвергается окислению путём переноса атомов водорода в митохондриальную дыхательную цепь. Однако цитозольный NADH не способен передавать водород на дыхательную цепь, потому что митоховдриальная мембрана для него непроницаема. Перенос водорода через мембрану происходит с помощью специальных систем, называемых "челночными". В этих системах водород транспортируется через мембрану при участии пар субстратов, связанных соответствующими дегидрогеназами, т.е. с обеих сторон митохондри-альной мембраны находится специфическая дегидрогеназа. Известны 2 челночные системы. В первой из этих систем водород от NADH в цитозоле передаётся на дигидроксиацетонфосфат ферментом глицерол-3-фосфатдегидрогеназой (NAD-зависимый фермент, назван по обратной реакции). Образованный в ходе этой реакции глицерол-3-фосфат, окисляется далее ферментом внутренней мембраны митохондрий - глицерол-3-фосфатдегидрогеназой (FAD-зависимым ферментом). Затем протоны и электроны с FADH 2 переходят на убихинон и далее по ЦПЭ (рис. 7-38).

Глицеролфосфатная челночная система работает в клетках белых мышц и гепатоцитов. Однако в клетках сердечных мышц митохондриальная глицерол-3-фосфатдегидрогеназа отсутствует. Вторая челночная система, в которой участвуют малат, цитозольная и митоховдриальная малат-дегидрогеназы, является более универсальной. В цитоплазме NADH восстанавливает оксалоа-цетат в малат (рис. 7-39, реакция 1), который при участии переносчика проходит в митохондрии, где окисляется в оксалоацетат NAD-зависимой маЛатдегидрогеназой (реакция 2). Восстановленный в ходе этой реакции NAD отдаёт водород в митоховдриальную ЦПЭ. Однако образованный из малата оксалоацетат выйти самостоятельно из митохондрий в цитозоль не может, так как мембрана митохондрий для него непроницаема. Поэтому оксалоацетат превращается в аспартат, который и транспортируется в цитозоль, где снова превращается в оксалоацетат. Превращения оксалоацетата в аспартат и обратно связаны с присоединением и отщеплением аминогруппы (реакции трансаминирования, см. раздел 9). Эта челночная система называется малат-аспартатной (рис. 7-39). Результат её работы - регенерация цитоплазматического NAD + из NADH.

Обе челночные системы существенно отличаются по количеству синтезированного АТФ. В первой системе соотношение Р/О равно 2, так как водород вводится в ЦПЭ на уровне KoQ. Вторая система энергетически более эффективна, так как передаёт водород в ЦПЭ через митохондриальный NAD + и соотношение Р/О близко к 3.

4. Баланс АТФ при аэробном гликолизе и распаде глюкозы до СО2 и Н2О

Выход АТФ при аэробном гликолизе

На образование фруктозо-1,6-бисфосфата из одной молекулы глюкозы требуется 2 молекулы АТФ (реакции 1 и 3 на рис. 7-33). Реакции, связанные с синтезом АТФ, происходят после распада глюкозы на 2 молекулы фосфотриозы, т.е. на втором этапе гликолиза. На этом этапе происходят 2 реакции субстратного фосфорилирования и синтезируются 2 молекулы АТФ (реакции 7 и 10). Кроме того, одна молекула глицеральдегид-3-фосфата дегидрируется (реакция 6), a NADH передаёт водород в митохондриальную ЦПЭ, где синтезируется 3 молекулы АТФ путём окислительного фосфорилирования. В данном случае количество АТФ (3 или 2) зависит от типа челночной системы. Следовательно, окисление до пирувата одной молекулы глицеральдегид-3-фосфата сопряжено с синтезом 5 молекул АТФ. Учитывая, что из глюкозы образуются 2 молекулы фосфотриозы, полученную величину нужно умножить на 2 и затем вычесть 2 молекулы АТФ, затраченные на первом этапе. Таким образом, выход АТФ при аэробном гликолизе составляет (5Ч2) - 2 = 8 АТФ.

Выход АТФ при аэробном распаде глюкозы до конечных продуктов

В результате гликолиза образуется пируват, который далее окисляется до СО 2 и Н 2 О в ОПК, описанном в разделе 6. Теперь можно оценить энергетическую эффективность гликолиза и ОПК, которые вместе составляют процесс аэробного распада глюкозы до конечных продуктов (табл. 7-4).

Таким образом, выход АТФ при окислении 1 моль глюкозы до СО 2 и Н 2 О составляет 38 моль АТФ.

В процессе аэробного распада глюкозы происходят 6 реакций дегидрирования. Одна из них протекает в гликолизе и 5 в ОПК (см. раздел 6). Субстраты для специфических NAD-зависимых дегидрогеназ: глицеральдегид-3-фосфат, жируват, изоцитрат, б-кетоглутарат, малат. Одна реакция дегидрирования в цитратном цикле под действием сукцинатдегидрогеназы происходит с участием кофермента FAD. Общее количество АТФ, синтезированное путём окислительного фофорилирования, составляет 17 моль АТФ на 1 моль глицеральдегидфосфата. К этому необходимо прибавить 3 моль АТФ, синтезированных путём субстратного фосфорилирования (две реакции в гликолизе и одна в цитратном цикле).

Рис. 7-38. Глицерофосфатная челночная система. 1 - глицеральдегид-3-фосфатдегидрогеназа; 2 - глицерол-3-фосфатдегидрогеназа (цитозольный фермент, назван по обратной реакции); 3 - глицерол-3-фосфатдегидрогеназа (митохондриальныи флавиновый фермент).

Таблица 7-4. Этапы аэробного распада глюкозы

Учитывая, что глюкоза распадается на 2 фос-фотриозы и что стехиометрический коэффициент дальнейших превращений равен 2, полученную величину надо умножить на 2, а из результата вычесть 2 моль АТФ, использованные на первом этапе гликолиза.

На первом этапе глюкоза расщепляется на 2 триозы:

Таким образом, на первом этапе гликолиза на активирование глюкозы затрачивается 2 молекулы АТФ и образуется 2 молекулы 3-фософоглицеринового альдегида.

На второй стадии окисляются 2 молекулы 3-фосфоглицеринового альдегида до двух молекул молочной кислоты.

Значение лактатдегидрогеназной реакции (ЛДГ) заключается в том, чтобы в безкислородных условиях окислить НАДН 2 в НАД и сделать возможным протекание дегидрогеназной реакции 3-фосфоглицеринового альдегида.

Суммарное уравнение гликолиза:

глюкоза + 2АДФ + 2Н 3 РО 4 → 2лактат + 2АТФ + 2Н 2 О

Гликолиз протекает в цитозоле. Его регуляцию осуществляют ключевые ферменты –фософофруктокиназа, пируваткиназа . Эти ферменты активируются АДФ и НАД, угнетаются АТФ и НАДН 2 .

Энергетическая эффективность анаэробного гликолиза сводится к разнице между числом израсходованных и образовавшихся молекул АТФ. Расходуется 2 молекулы АТФ на молекулу глюкозы в гексокиназной реакции и фосфофруктокиназной реакции. Образуется 2 молекулы АТФ на одну молекулу триозы (1/2 глюкозы) в глицерокиназной реакции и пируваткиназной реакции. На молекулу глюкозы (2 триозы) образуется соответственно 4 молекулы АТФ. Общий баланс: 4 АТФ – 2 АТФ = 2 АТФ. 2 молекулы АТФ аккумулируют в себе ≈ 20 ккал, что составляет около 3% от энергии полного окисления глюкозы (686 ккал).

Несмотря на сравнительно невысокую энергетическую эффективность анаэробного гликолиза, он имеет важное биологическое значение, состоящее в том, что это единственный способ образования энергии в безкислородных условиях. В условиях дефицита кислорода он обеспечивает выполнение интенсивной мышечной работы в начальный период физической нагрузки.

В тканях плода анаэробный гликолиз очень активен в условиях дефицита кислорода. Он остаётся активным в период новорожденности , постепенно сменяясь на аэробное окисление.

Дальнейшее превращение молочной кислоты

  • При интенсивном поступлении кислорода в аэробных условиях молочная кислота превращается в ПВК и через ацетил КоА включается в цикл Кребса, давая энергию.
  • Молочная кислота транспортируется из мышц в печень, где используется на синтез глюкозы – цикл Р. Кори.

Цикл Кори

  • При больших концентрациях молочной кислоты в тканях для предотвращения закисления (ацидоза) она может выделяться через почки и потовые железы.

Аэробное окисление глюкозы



Аэробное окисление глюкозы включает 3 стадии:

1 стадия протекает в цитозоле, заключается в образовании пировиноградной кислоты:

Глюкоза → 2 ПВК + 2 АТФ + 2 НАДН 2 ;

2 cтадия протекает в митохондриях:

2 ПВК → 2 ацетил - КоА + 2 НАДН 2 ;

3 стадия протекает внутри митохондрий:

2 ацетил - КоА → 2 ЦТК.

В силу того, что 2 молекулы НАДН 2 на первом этапе образуются в цитозоле, а окисляться они могут только в митохондриальной дыхательной цепи, необходим перенос водорода от НАДН 2 цитозоля во внутримитохондриальные цепи переноса электронов. Митохондрии непроницаемы для НАДН 2 , поэтому для переноса водорода из цитозоля в митохондрии существуют специальные челночные механизмы. Их суть отражена на схеме, где Х окисленная форма переносчика водорода, а ХН 2 – его восстановленная форма:

В зависимости от того, какие вещества участвуют в переносе водорода через митохондриальную мембрану, различают несколько челночных механизмов.

Глицерофосфатный челночный механизм, в котором происходит потеря двух молекул АТФ, т.к. вместо двух молекул НАДН 2 (потенциально 6 молекул АТФ) образуется 2 молекулы ФАДН 2 (реально 4 молекулы АТФ).

Малатный челночный механизм работает на вынос водорода из митохондриального матрикса:

Энергетическая эффективность аэробного окисления.

  1. глюкоза → 2 ПВК + 2 АТФ + 2 НАДН 2 (→8 АТФ).
  2. 2 ПВК→ 2 ацетил КоА + 2 НАДН 2 (→6 АТФ).
  3. 2 ацетил КоА → 2 ЦТК (12*2 = 24 АТФ).

Итого возможно образование 38 молекул АТФ, из которых необходимо вычесть 2 молекулы АТФ, теряемые в глицерофосфатном челночном механизме. Таким образом, образуется 36 АТФ .

36 АТФ (около 360 ккал) составляют от 686 ккал. 50-60% - это энергетическая эффективность аэробного окисления глюкозы, что в двадцать раз выше, чем эффективность анаэробного окисления глюкозы. Поэтому в тканях при поступлении кислорода анаэробный путь блокируется, и это явление называется эффектом Пастера . У новорожденных аэробный путь начинает активироваться в первые 2-3 месяца жизни.



6.5. 2. Биосинтез глюкозы (глюконеогенез)

Глюконеогенез - это путь синтеза глюкозы в организме из неуглеводных веществ, который способен длительно поддерживать уровень глюкозы при отсутствии углеводов в пищевом рационе. Исходными веществами для него являются молочная кислота, ПВК, аминокислоты, глицерин. Наиболее активно глюконеогенез протекает в печени и почках. Этот процесс внутриклеточно локализован частично в цитозоле, частично в митохондриях. В целом глюконеогенез является процессом обратным гликолизу.

В гликолизе имеются три необратимых стадии, катализируемых ферментами:

· пируваткиназа;

· фосфофруктокиназа;

· гексокиназа.

Поэтому в глюконеогенезе вместо этих ферментов имеются специфические ферменты, которые осуществляют «обход» этих необратимых стадий:

  • пируваткарбоксилаза и карбоксикиназа («обходят» пируваткиназу);
  • фруктозо-6-фосфатаза («обходит» фосфофруктокиназу);
  • глюкозо-6-фосфатаза («обходит» гексокиназу).

Глюкозо-6-фосфат под действием глюкозо-6-фосфатазы переходит в глюкозу, которая выходит из гепатоцитов в кровь.

Ключевыми ферментами для глюконеогенеза являются пируваткарбоксилаза и фруктозо-1,6-дифосфатаза . Активатором для них являются АТФ (на синтез одной молекулы глюкозы необходимо 6 молекул АТФ).

Таким образом, высокая концентрация АТФ в клетках активирует глюконеогенез, требующий затраты энергии и в то же время ингибирует гликолиз (на стадии фосфофруктокиназы), ведущий к образованию АТФ. Данное положение иллюстрирует приведенный ниже график.

Витамин Н

В глюконеогенезе участвует витамин Н (биотин, антисеборейный витамин), который по химической природе представляет собой серосодержащий гетероцикл с остатками валериановой кислоты. Он широко распространён в животных и растительных продуктах (печень, желток). Суточная потребность в нём составляет 0,2 мг. Авитаминоз проявляется дерматитом, поражением ногтей, увеличением или уменьшением образования кожного жира (себорея). Биологическая роль витамин Н:

  • участвует в реакциях карбоксилирования;
  • участвует в реакциях транскарбоксилирования;
  • участвует в обмене пуриновых оснований, некоторых аминокислот.

Глюконеогенез активен в последние месяцы внутриутробного развития. После рождения ребёнка активность процесса возрастает, начиная с третьего месяца жизни.

Распад углеводов в аэробных условиях может идти прямым (aпотомическим или пентозным) путем и непрямым (ди-хотомическим) путем.


Дихотомическое (греч. dicha - на две части, tome-сечение) окисление углеводов идет по уравнению:


C6H12O6+6O2 = 6 СО2+б Н2О+686 ккал


Этот путь является основным в образовании энергии. Первые этапы этого пути совпадают с анаэробным окислением глюкозы. Расхождение путей начинается на стадии образования пиро-виноградной кислоты, которая в животных тканях декарбоксили-руется окислительным путем. Гликолиз – это по-следовательность ферментативных реакций, приводящих к превращению глюкозы в пируват с одновременным образованием АТФ. При аэробных условиях пируват проникает в митохондрии, где полностью окисляется до СО2 и Н2О. Если содержание кислорода недостаточно, как это может иметь место в активно сокращающейся мышце, пируват превращается в лактат. Анаэробный гликолиз – сложный ферментативный процесс распада глюкозы, протекающий в тканях человека и животных без потребления кислорода. Конечным продуктом гликолиза является молочная кислота. В процессе гликолиза образуется АТФ. Суммарное уравнение гликолиза можно представить следующим образом:

В анаэробных условиях гликолиз – единственный процесс в животном организме, поставляющий энергию. Именно благодаря гликолизу организм человека и животных определенный период может осуществлять ряд физиологических функций в условиях недостаточности кислорода. В тех случаях, когда гликолиз протекает в присутствии кислорода, говорят об аэробном глико-лизе. Первой ферментативной реакцией гликолиза является фосфорили-рование, т.е. перенос остатка ортофосфата на глюкозу за счет АТФ. Реакция катализируется ферментом гексокиназой:

Второй реакцией гликолиза является превращение глюкозо-6-фос-фата под действием фермента глюкозо-6-фосфат-изомеразы во фруктозо-6-фосфат:

Третья реакция катализируется ферментом фосфофруктокиназой; образовавшийся фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ:

Четвертую реакцию гликолиза катализирует фермент альдолаза. Под влиянием этого фермента фруктозо-1,6-бисфосфат расщепляется на две фосфотриозы:

Пятая реакция – это реакция изомеризации триозофосфатов. Катализируется ферментом триозофосфатизомеразой:

Образованием глицеральдегид-3-фосфата как бы завершается первая стадия гликолиза. Вторая стадия – наиболее сложная и важная. Она включает окислительно-восстановительную реак-цию (реакция гликолитической оксидоредукции), сопряженную с субстратным фосфорилированием, в процессе которого образуется АТФ. В результате шестой реакции глицеральдегид-3-фосфат в присутствии фермента глицераль-дегидфосфатдегидрогеназы, кофермента НАД и неорганического фосфата подвергается своеобразному окислению с образованием 1,3-бисфосфоглицериновой кислоты и восстановленной формы НАД (НАДН). Эта реакция блокируется йод- или бромацетатом, протекает в несколько этапов:

Седьмая реакция катализируется фосфоглицераткиназой, при этом происходит передача богатого энергией фосфатного остатка (фосфатной группы в положении 1) на АДФ с образованием АТФ и 3-фосфогли-цериновой кислоты (3-фосфоглицерат):

Восьмая реакция сопровождается внутримолекулярным переносом оставшейся фосфатной группы, и 3-фосфог-лицериновая кислота превращается в 2-фосфоглицериновую кислоту (2-фосфоглицерат).

Девятая реакция катализируется ферментом енолазой, при этом 2-фосфоглицериновая кислота в результате отщепления молекулы воды переходит в фосфоенолпировиноградную кислоту (фосфоенолпируват), а фосфатная связь в положении 2 становится высокоэргической:

Десятая реакция характеризуется разрывом высокоэргической связи и переносом фосфатного остатка от фосфоенолпирувата на АДФ (субстратное фосфорилирование). Катализируется фер-ментом пируваткиназой:

В результате одиннадцатой реакции происходит восстановление пировиноградной кислоты и образуется молочная кислота. Реакция протекает при участии фермента лактатдегидрогеназы и кофермента НАДН, образовавшегося в шестой реакции:

Биологическое значение процесса гликолиза заключается прежде всего в образовании богатых энергией фосфорных соединений. На первых стадиях гликолиза затрачиваются 2 молекулы АТФ (гексокиназная и фосфофрук-токиназная реакции). На последующих образуются 4 молекулы АТФ (фосфог-лицераткиназная и пируваткиназная реакции). Таким образом, энергетическая эффективность гликолиза в анаэробных условиях составляет 2 молекулы АТФ на одну молекулу глюкозы.


  • Аэробное окисление углеводов . Распад углеводов в аэробных условиях может идти прямым (aпотомическим или пентозным) путем и непрямым (ди-хотомическим) путем.


  • Аэробное окисление углеводов . Распад углеводов в аэробных условиях может идти прямым (aпотомическим или пентозным) путем и.


  • Гликолиз-простейшая форма биол. механизма аккумулирования энергии углеводов в АТФ.
    При энергетически более вы-годном аэробном окислении из одной молекулы глюкозы...


  • Окислительное фосфорилирование было бы правильнее назвать фосфорилированием в дыхательной цепи.
    Аэробное окисление углеводов .


  • - ФГА может вступить в реакции гликонеогенеза с образованием углеводов - глюкозы или гликогена.
    Активация ЖК происходит в цитоплазме, а b-окисление - в митохондриях.


  • В процессе дыхания углеводы , жиры и белки подвергаются многоступенчатому окислению , которое приводит к вос-становлению основных поставщиков ВЭ для дыхательных флави-нов...


  • Гликонеогенез - образование углеводов (глюкозы или гликогена) из веществ неуглеводного происх.
    Окислительный этап: 2 реакции окисления гексозофосфата без участия кислорода.


  • Главный углевод молока - лактоза - присутствует в молоке всех видов млекопитающих.
    Окисление пирувата до ацетил-КоА происходит при участии ряда ферментов и коферментов...


  • При сгорании 1 г углеводов образуется 4 ккал. Это меньше, чем у жиров (9 ккал).
    г. Углеводы как источник энергии обладают способностью окисляться в организме как аэробным , так и...


  • В основе современных представлений о распаде жирных кислот в тканях лежит теория -окисления
    ГБФ-путь распада углеводов обеспечивает синтез энергией.

Найдено похожих страниц:10


Аэробное окисление углеводов - основной путь образования энергии для организма. Непрямой - дихотомический и прямой - апотомический.

Прямой путь распада глюкозы - пентозный цикл - приводит к образованию пентоз и накоплению НАДФН 2 . Пентозный цикл характеризуется последовательным отщеплением от молекул глюкозы каждого из ее 6 атомов углерода с образованием в течение одного цикла по 1 молекуле углекислого газа и воды. Распад всей молекулы глюкозы происходит в течение 6 повторяющихся циклов.

Значение пентозофосфатного цикла окисления углеводов в обмене веществ велико:

1. Он поставляет восстановленный НАДФ, необходимый для биосинтеза жирных кислот, холестерина и т.д. За счет пентозного цикла на 50% покрывается потребность организма в НАДФН 2 .

2. Поставка пентозофосфатов для синтеза нуклеиновых кислот и многих коферментов.

Реакции пентозного цикла протекают в цитоплазме клетки.

При ряде патологических состояний удельный вес пентозного пути окисления глюкозы возрастает.

Непрямой путь - распад глюкозы до углекислого газа и воды с образованием 36 молекул АТФ.

1. Распад глюкозы или гликогена до пировиноградной кислоты

2. Превращение пировиноградной кислоты в ацетил- КоА

Окисление ацетил-КоА в цикле Кребса до углекислого газа и воды

С 6 Н 12 О 6 + 6 О 2 6 СО 2 + 6 Н 2 О + 686 ккал

В случае аэробного превращения пировиноградная кислота подвергается окислительному декарбоксилированию с образованием ацетил- КоА, который затем окисляется до углекислого газа и воды.

Окисление пирувата до ацетил-КоА, катализируется пируватдегидрогеназной системой и протекает в несколько стадий. Суммарно реакция:

Пируват + НАДН + НS-КоА ацетил- КоА+ НАДН 2 + СО 2 реакция практически необратима

Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот или цикле Кребса. Этот процесс протекает в митохондриях.

Цикл состоит из 8 последовательных реакций:

В этом цикле, молекула, содержащая 2 атома углерода (уксусная кислота в форме ацетил-КоА) реагирует с молекулой щавелевоуксусной кислоты, в результате чего образуется соединение с 6 атомами углерода - лимонная кислота. В процессе дегидрирования, декарбоксилирования и подготовительной реакции лимонная кислота вновь превращается в щавелевоуксусную кислоту, которая легко соединяется с другой молекулой ацетил- КоА.

1) ацетил-КоА + оксалоацетат (ЩУК) лимонная кислота

цитратсинтаза

2) лимонная кислота изолимонная кислота

аконитатгидратаза

3)изолимонная к-та+НАД-кетоглутаровая к-та+НАДН 2 + СО 2

изоцитратдегидрогеназа

4)-кетоглутаровая к-та+НS-КоА+НАДсукцинилSКоА+НАДН 2 + СО 2

5) сукцинил-КоА+ГДФ+Фнянтарная кислота+ГТФ+НS-КоА

сукцинил КоА синтетаза

6) янтарная кислота+ФАДфумаровая кислота+ФАДН 2

сукцинатдегидрогеназа

7) фумаровая кислота+ Н 2 О L яблочная кислота

фумаратгидратаза

8) малат+ НАДоксалоацетат+ НАДН 2

малатдегидрогеназа

Итого при расщеплении в тканях молекулы глюкозы синтезируется 36 молекул АТФ. Несомненно, это в энергетическом отношении более эффективный процесс чем гликолиз.

Цикл Кребса - общий конечный путь, которым завершается обмен углеводов, жирных кислот и аминокислот. Все эти вещества включаются в цикл Кребса на том или другом этапе. Далее происходит биологическое окисление или тканевое дыхание, главной особенностью которого является то, что оно протекает постепенно, через многочисленные ферментативные стадии. Этот процесс происходит в митохондриях, клеточных органеллах, в которых сосредоточено большое количество ферментов. В процессе участвуют пиридинзависимые дегидрогеназы, флавинзависимые дегидрогеназы, цитохромы, коэнзим Q - убихинон, белки, содержащие негеминовое железо.

Интенсивность дыхания управляется соотношением АТФ/АДФ. Чем меньше это отношение, тем интенсивнее идет дыхание, обеспечивая выработку АТФ.

Также цикл лимонной кислоты является в клетке главным источником двуокиси углерода для реакций карбоксилирования, с которых начинается синтез жирных кислот и глюконеогенез. Та же двуокись углерода поставляет углерод для мочевины и некоторых звеньев пуриновых и пиримидиновых колец.

Взаимосвязь между процессами углеводного и азотистого обмена также достигаются посредством промежуточных продуктов цикла лимонной кислоты.

Существует несколько путей, по которым промежуточные продукты цикла лимонной кислоты включаются в процесс липогенеза. Расщепление цитрата приводит к образованию ацетил-КоА, играющего роль предшественника в биосинтезе жирных кислот.

Изоцитрат и малат обеспечивают образование НАДФ, который расходуется в последующих восстановительных этапах синтеза жиров.

Роль ключевого фактора, определяющего превращение НАДН играет состояние адениннуклеотидов. Высокое содержание АДФ и низкое АТФ свидетельствует о малом запасе энергии. При этом НАДН вовлекается в реакции дыхательной цепи, усиливая сопряженные с запасанием энергии процессы окислительного фосфорилирования. Обратное явление наблюдается при низком содержании АДФ и высоком АТФ. Ограничивая работу системы переноса электронов, они способствуют использованию НАДН в других восстановительных реакциях, таких как синтез глутамата и глюконеогенез.

Дыхание. Аэробное окисление углеводов происходит в присутствии кислорода воздуха, в связи с чем его часто называют дыханием.

В отличие от гликолиза (гликогенолиза), где конечным акцептором атомов водорода и электронов служит провиноградная кислота, при дыхании роль такого акцептора выполняет кислород. В первом случае в качестве конечного продукта образуется молочная кислота, в которой суммарная степень окисления углерода осталась такой же, как и у глюкозы, во втором случае образуется углекислый газ - значительно более простое соединение, у которого единственный атом углерода полностью окислен. Вместе с тем дыхание и гликолиз имеют много общих звеньев.

Дыхание, так же как и гликолиз, сопровождается образованием фосфорных эфиров глюкозы и фруктозы, фосфотриоз-диоксиацетонфосфата и глицеральдегид-3-фосфата, а также таких промежуточных продуктов, как 1,3-дифосфоглицериновая кислота, 3-фосфоглицерат, фосфоенолпирувати пировиноградная кислота. Многие реакции гликолиза и дыхания катализируются одними и теми же ферментами. Другими словами, при дыхании превращение глюкозы до молочной кислоты проходит все те этапы, что и при гликолизе. Однако при этом атомы водорода, отщепленные от глицеральдегид-3-фосфата, не восстанавливают пировиноградную кислоту, а передаются на кислород, пройдя через сложную систему ферментов дыхательной цепи.

Молочная кислота, образующаяся в процессе гликолиза, как уже говорилось, содержит еще довольно значительный запас (примерно 93 %) потенциальной энергии. Однако несмотря на это, первые живые организмы, извлекавшие энергию в анаэробных условиях, выделяли ее в окружающую среду.

С появлением в атмосфере Земли кислорода живые организмы выработали новые, более совершенные механизмы окисления, в результате которых количество высвобождающейся энергии оказалось намного больше, чем при гликолизе, поскольку конечным продуктом дыхания является СО 2 , атом углерода которого полностью окислен. Наряду с этим природа создала новые механизмы доокисления конечного продукта гликолиза, который выводился в окружающую среду. Иными словами, она как бы создала надстройку над гликолизом для окисления его конечного продукта в аэробных условиях, сохранив прежними многие его этапы.

При дыхании не образуется молочная кислота. Поэтому пировиноградная кислота является тем общим субстратом, или центральным звеном, где заканчивается гликолиз и начинается дыхание (или же расходятся пути гликолиза и дыхания - анаэробного и аэробного окисления глюкозы).

Сохранив прежние этапы гликолиза, клетки организма человека и высших животных сохранили способность окислять глюкозу в анаэробных условиях, в результате чего при недостатке кислорода они имеют возможность получать энергию таким путем. Однако при этом образовавшаяся в анаэробных условиях молочная кислота, обладающая довольно большим запасом энергии, не выбрасывается в окружающую среду, а накапливается и мышцах. Из мышц она током крови доставляется в печень, где снова превращается в глюкозу. При поступлении в клетку достаточного количества кислорода часть молочной кислоты окисляется дальше до СО 2 и Н 2 О.

Превращение молочной кислоты. Образовавшаяся при анаэробном окислении глюкозы молочная кислота окисляется до СО 2 и Н 2 О следующим образом. Сначала под действием фермента лактатдегидрогеназы, коферментом которой является НАД, она окисляется до пировиноградной кислоты:

которая затем под влиянием пируватдекарбоксилазы, представляющей собой сложный полиферментный комплекс, подвергается окислительному декарбоксилированию с образованием активной формы уксусной кислоты - ацетил- КоА:

где ТПФ - тиаминпирофосфат; ЛК - липоевая кислота; HSKoA - коэнзим А.

В том случае, когда ткани хорошо снабжаются кислородом, пировиноградная кислота подвергается окислительному декарбоксилированию сразу, не восстанавливаясь до молочной кислоты. Восстановленный же кофермент НАД Н + Н + , образовавшийся при окислении глицеральдегид-3-фосфата, передает водород через ферменты аэробного обмена (т.е. дыхательную цепь) на кислород, образуя воду.

Превращение пировиноградной кислоты в ацетил-КоА является подготовительной, или переходной, стадией, благодаря которой углеводы через пировиноградную кислоту, а затем через ацетил-КоА включаются в новый этап - кислородное окисление. Другими словами, этот процесс - связующее звено между гликолизом и собственно дыханием. Однако уже в результате окислительного декарбоксилирования пировиноградной кислоты до ацетил-КоА высвобождается около 9 % всей энергии окисления глюкозы, т.е. больше, чем при гликолизе в целом, где высвобождается всего 5-7 % энергии. Если учесть 5-7 % энергии гликолиза и 9 % энергии окислительного декарбоксилирования пировиноградной кислоты, то всего выделяется 14-16 % энергии, аккумулированной в углеводах. Следовательно, остальные 84-86 % энергии сохраняется еще в молекуле уксусной кислоты.

Цикл трикарбоновых кислот (цикл Кребса) представляет собой новый, более совершенный механизм окисления углеводов, выработанный у живых организмов с появлением на Земле кислорода. При помощи этого механизма происходит дальнейшее превращение уксусной кислоты в форме ацетил-КоА до СО 2 и Н 2 О в аэробных условиях с высвобождением энергии.

В связи с тем что первыми субстратами в процессе окисления уксусной кислоты являются трикарбоновые кислоты, а гипотезу о механизме этого окисления выдвинул X. А. Кребс, процесс назвали циклом трикарбоновых кислот, или циклом Кребса.

Первой реакцией цикла является реакция конденсации ацетил-КоА со щавелевоуксусной кислотой, которую катализирует фермент цитратсинтаза. В результате образуется активная форма лимонной кислоты - цитрил-KoA:

Гидролизуясь, цитрил-КоА превращается в лимонную кислоту:

Последняя под действием фермента аконитатгидратаза превращается в цис-аконитовую кислоту, которая, присоединяя воду, превращается в изолимонную кислоту:

Изолимонная кислота далее окисляется путем отщепления двух атомов водорода, превращаясь в щавелевоянтарную. Этой реакцией начинается отщепление СО 2 и первое окисление ацетил-КоА в трикарбоновом цикле. Щавелево-янтарная кислота, декарбоксилируясь, превращается в α-кетоглутаровую кислоту. Дегидрирование изолимон-ной и декарбоксилирование щавелево-янтарной кислот катализируется ферментом изоцитратдегидрогеназой с участием кофермента НАД + :

Следующим этапом цикла трикарбоновых кислот является реакция окислительного декарбоксилирования α-кетоглутаровой кислоты, в результате которой образуется янтарная кислота. Этот процесс протекает в две стадии. Сначала α-кетоглутаровая кислота подвергается окислительному декарбоксилированию с образованием активной формы янтарной кислоты - сукцинил-КоА - и СО 2 . Эта реакция напоминает реакцию превращения пировиноградной кислоты до ацетил-КоА и катализируется также сложным полиферментным комплексом - α-кетоглутаратдегидрогеназой. В результате этой реакции происходит второе отщепление углекислого газа и дегидрирование уксусной кислоты, вступившей в цикл:

Образовавшаяся активная форма янтарной кислоты сукцинил-КоА, в отличие от ацетил-КоА, представляет собой макроэргическое тио-эфирное соединение, в котором аккумулирована энергия окисления α-кетоглутаровой кислоты.

На следующей стадии эта энергия используется для образования ГТФ (гуанозинтрифосфорной кислоты) из ГДФ и неорганической фосфорной кислоты и запасается в фосфатных связях этого соединения. Реакция катализируется ферментом сукцинилтиокиназой:

Образовавшийся в результате этой реакции ГТФ взаимодействует с АДФ, в результате чего образуется АТФ:

ГТФ + АДФ ГДФ + АТФ.

Синтез АТФ, сопряженный с окислением субстрата, является еще одним примером субстратного фосфорилирования.

В дальнейшем ходе цикла трикарбоновых кислот происходит еще два дегидрирования. Янтарная кислота под действием сукцинатде-гидрогеназы с участием кофермента ФАД + отщепляет два атома водорода и превращается в фумаровую кислоту, а ФАД + восстанавливается до ФАД Н 2 . Затем фумаровая кислота, присоединяя молекулу воды, образует яблочную кислоту (малат), которая при помощи малат-дегидрогеназы и кофермента НАД + снова подвергается дегидрированию. При этом образуется щавелево-уксусная кислота, т.е. субстрат, с которого начался цикл трикарбоновых кислот:

Регенерированная щавелево-уксусная кислота может снова вступать в реакцию с новой молекулой ацетил-КоА, и процесс начнется в том же порядке.

Общую схему цикла трикарбоновых кислот можно представить следующим образом:

Цикл трикарбоновых кислот

(в рамках показаны конечные продукты окисления ацетил-КоА).

Из приведенной схемы следует, что основная функция цикла Кребса заключается в дегидрировании уксусной кислоты. Если подвести баланс ферментативного дегидрирования одного цикла, можно легко подсчитать, что в результате реакций образуется восемь атомов водорода: шесть атомов используется для восстановления НАД + и два - для восстановления ФАД + сукцинатгидрогеназы.

Суммарная реакция этого цикла описывается следующим уравнением:

СН 3 СООН + 2Н 2 О 2СО 2 + 8Н,

из которого следует, что четыре атома водорода принадлежат воде. Следовательно, остальные четыре образовались при дегидрировании уксусной кислоты, т.е. это весь водород, который был в составе ее молекулы. Одновременно с этим в виде оксида углерода (IV) дважды выделилось два атома углерода (один раз при декарбоксилировании щавелево-янтарной кислоты, второй - при декарбоксилировании α-кетоглутаровой кислоты), т.е. ровно столько, сколько их поступило в цикл в виде ацетальной группы.

Из приведенного выше уравнения также следует, что в цикл не вовлекаются ни кислород, ни АТФ, ни неорганическая фосфорная кислота. Все эти метаболиты взаимодействуют в дыхательной цепи, куда вовлекаются неорганическая фосфорная кислота, отщепленные при дегидрировании атомы водорода и кислород, а в результате окислительного фосфорилирования образуется АТФ. Энергия для этого процесса выделяется в результате окислительно-восстановительных реакций при передаче атомов водорода и электронов от восстановленных форм НАД Н 2 и ФАД Н 2 на кислород.

Процесс окислительного фосфорилирования подробно изложен в гл. 22. Напомним только, что на каждую пару электронов (пара атомов водорода) в дыхательной цепи путем окислительного фосфорилирования образуется три молекулы АТФ (одна при переносе атомов водорода от НАД Н + Н + к ФАД, вторая - при переносе пары электронов от цитохрома b к цитохрому с и третья - от цитохрома а 3 к атому кислорода). Таким образом, каждая окислительная стадия превращения глюкозы до СО 2 и Н 2 О, связанная с НАД, сопровождается образованием трех молекул АТФ, связанная с ФАД - образованием двух молекул АТФ.

Энергетический баланс окисления углеводов. Сначала подведем итог энергетического баланса за счет дегидрирования уксусной кислоты в цикле Кребса. Как мы уже установили, в этом цикле происходит четыре дегидрирования, в результате которых образовались три восстановленные формы НАД, одна- ФАД и путем субстратного фосфорилирования синтезировалась одна молекула АТФ:

Таким образом, в цикле Кребса синтезируется в шесть раз больше АТФ, чем при гликолизе. Если учесть еще две восстановленные молекулы НАД, образовавшиеся при окислении молочной и пировиноград-ной кислот, то это составит еще 6 молекул АТФ, а в сумме- 18. Поскольку глюкоза распадается на две фосфотриозы, количество АТФ увеличивается в 2 раза и составит 36 молекул.

Добавив к этому 2 молекулы АТФ, образовавшиеся в процессе гликолиза, получим общий баланс энергии, аккумулированной в мак-роэргических связях АТФ при окислении глюкозы до СО 2 и Н 2 О: 36 + 2 = 38.

Установлено, что полное окисление 1 моль глюкозы до СО 2 и Н 2 О сопровождается выделением 2872 кДж. В 38 молекулах АТФ аккумулируется 1270-1560 кДж, т.е. приблизительно 50 % всей энергии, высвободившейся в процессе окисления. Следовательно, остальные 50 % энергии рассеиваются в организме в форме теплоты для поддержания соответствующей температуры.

Из рассмотренных фаз окисления глюкозы исключительно важное значение имеет аэробная фаза. Если при анаэробном окислении, т.е. при образовании молочной кислоты, выделяется всего 197 кДж энергии, из которых 40 % аккумулируется в макроэргических связях двух молекул АТФ, то в аэробной фазе выделяется 2872 - 197 = = 2675 кДж, что составляет около 93 % всей энергии. Таким образом, основную массу энергии организм получает при дыхании.

Апотомический путь окисления глюкозы. Наряду с циклом Кребса во многих клетках существует и другой путь расщепления глюкозы, называемый апотомическим, или пентозофосфатным. Экспериментально установлено, что в аэробных условиях в эритроцитах, печени, почках глюкоза может окисляться до 6-монофосфоглюконовой кислоты, причем фруктозо-1,6-дифосфат в этом процессе не образуется. В результате такого окисления глюкозы образуется значительное количество пентоз. Этот путь был открыт советским биохимиком В. А. Энгельгардтом, а отдельные его этапы изучены О. Варбургом, Ф. Диккенсом, И. Д. Головацким и др. Пентозофосфатный путь не является главным путем окисления глюкозы. Основное его назначение состоит в том, чтобы снабжать клетки восстановленными формами НАДФ, необходимыми для биосинтеза жирных кислот, холестерина, пуриновых и пиримидиновых оснований, стероидов и др. Вторая функция этого пути заключается в том, что он поставляет пентозы, главным образом D-рибозу, для синтеза нуклеиновых кислот.

Пентозофосфатный путь расщепления глюкозы суммарно можно выразить следующим уравнением:

Глюкозо-6-монофосфат + 2 НАДФ + → Рибозо-5-монофосфат + СО 2 + 2 НАДФ·Н + Н + + 2Н + .

Пентозы, не использованные для биосинтеза нуклеиновых кислот и нуклеотидов, расходуются на биосинтез других соединений и регенерацию глюкозы.

Биосинтез углеводов

Существует два основных способа биосинтеза углеводов из относительно несложных метаболитов. Один из них заключается в восстановлении углекислого газа до глюкозы. Этот процесс, характерный для зеленых растений и называемый фотосинтезом, осуществляется за счет энергии солнечных лучей при помощи хлорофилла согласно следующему уравнению:

СО 2 + 2Н 2 О 1/6С 6 Н 12 О 6 + О 2 + Н 2 О.

Улавливая солнечные лучи и преобразуя их энергию в энергию углеводов, зеленые растения обеспечивают сохранение и развитие жизни на Земле. В этом заключается, по словам К. А.Тимирязева, космическая роль зеленых растений как посредника между солнцем и всем живым на Земле.

В последнее время работами группы ученых Института биохимии им. А. В. Палладина АН УССР под руководством академика М. Ф. Гулого показано, что ткани высших животных также способны фиксировать углекислый газ, хотя механизм фиксации его отличается от такового у фотосинтезирующих клеток. Он заключается в наращивании углеродного скелета оксидом углерода (IV) таких субстратов, как кетокислоты, жирные кислоты, аминокислоты и др.

В печени, почках и скелетных мышцах человека и высших животных существует другой путь биосинтеза углеводов, называемый глюконеогенезом. Это синтез глюкозы из пировиноградной или молочной кислоты, а также из так называемых гликогенных аминокислот, жиров и других предшественников, которые в процессе метаболизма могут превращаться в пировиноградную кислоту или метаболиты цикла трикарбоновых кислот.

Глюконеогенез- это путь, обратный гликолизу. Однако в этом пути есть три стадии, которые в энергетическом отношении не могут быть использованы при превращении пировиноградной кислоты в глюкозу. Эти три стадии гликолиза заменены «обходными» реакциями с меньшей затратой энергии.

Первой обходной реакцией является превращение пировиноградной кислоты в фосфоенолпировиноградную. Поскольку расщепление глюкозы происходит в митохондриях, а синтез - в цитоплазме, на первом этапе митохондриальная пировиноградная кислота превращается сначала в щавелево-уксусную. Катализирует это превращение фермент пируваткарбоксилаза, активируемая ацетил-КоА с участием АТФ. Образовавшаяся щавелево-уксусная кислота восстанавливается затем с участием НАД Н +Н + в яблочную:

Пировиноградная кислота + СО 2 Щавелево-уксусная кислота Яблочная кислота.

Яблочная кислота диффундирует в цитоплазму, окисляется цитоплазматической малатдегидрогеназой с образованием цитоплазматической щавелево-уксусной кислоты, из которой образуется фосфоенолпировиноградная кислота. Эту реакцию катализирует фосфоенолпируваткарбоксикиназа. Донором фосфорной кислоты служит ГТФ:

Яблочная кислота Щавелево-уксусная кислота Фосфоенолпировиноградная кислота.

Далее следует целая серия обратных реакций, заканчивающихся образованием фруктозо-1,6-дифосфата. Превращение фруктозо-1,6-дифосфата в фруктозо-6-фосфат- вторая необратимая реакция гликолиза. Поэтому она катализируется не фосфофруктокиназой, а фруктозодифосфатазой. Этот фермент катализирует необратимый гидролиз 1-фосфатной группы:

Фруктозо-1, 6-дифосфат + Н 2 О →Фруктозо-6-фосфат + Н 3 РО 4 .

На следующей (обратимой) стадии биосинтеза глюкозы фруктозо-6-фосфат превращается в глюкозо-6-фосфат под действием фосфоглюко-изомеразы гликолиза.

Расщепление глюкозо-6-фосфата до глюкозы - третья необратимая реакция, которая не осуществляется путем обращения гексокиназой. Свободная глюкоза образуется при помощи глюкозо-6-фосфатазы, катализирующей реакцию гидролиза:

Глюкозо-6-фосфат +Н 2 О → Глюкоза + H 3 PO 4 .

В большинстве клеток глюкозо-6-фосфат, образующийся в процессе гликогенолиза, используется как предшественник для биосинтеза олиго- и полисахаридов. Большую роль в биосинтезе этих сложных сахаров играет соединение уридинфосфоглюкоза, которая выполняет роль промежуточного переносчика глюкозы.

При биосинтезе гликогена, например, глюкозо-6-фосфат, превратившись в глюкозо-1-фосфат под действием фосфоглюкомутазы, взаимодействует с уридинтрифосфорной кислотой (УТФ) - соединением, аналогичным АТФ, в которое вместо аденина входит азотистое основание урацил. В результате этого взаимодействия при помощи глюкозо-I -фосфатуридилтрансферазы образуется уридилдифосфоглюкоза:

Глюкозо-1-фосфат + УТФ УДФ-глюкоза+Фн.

На заключительном этапе биосинтеза гликогена в реакции, катали-зируемой гликогенсинтетазой, остаток глюкозы с УДФ-глюкозы переносится на концевой остаток глюкозы амилазной цепи с образованием 1,4-гликозидной связи (см. гл. 16). Ветвление гликогена путем образования 1,6-связей завершается амило-1,4-1,6-трансглюкозидазой.

Биосинтез гликогена осуществляется не только из глюкозо-6-фосфата, образовавшегося путем глюконеогенеза. Как уже отмечалось выше, для его биосинтеза используется также часть глюкозы после всасывания. Синтез гликогена, как процесс образования подвижного резерва углеводов в организме, имеет большое биологическое значение. Ведущая роль в этом принадлежит печени. Благодаря синтезу и отложению гликогена в печени поддерживается постоянная концентрация глюкозы в крови и других тканях, а также предотвращаются потери ее с мочой при употреблении пищи, особенно углеводной. Кроме того, отложение гликогена в печени способствует постепенному использованию углеводов в зависимости от условий существования организма.

Использованию глюкозы для синтеза гликогена предшествует образование глюкозофосфорных эфиров. Сначала образуется глюко-зо-6-монофосфат. Источником энергии и донатором фосфата является АТФ. Катализирует эту реакцию гексокиназа. Под действием фермента фосфоглюкомутазы глюкозо-6-монофосфат превращается в глюкозо-1-монофосфат:

Дальнейшее превращение глюкозо-1-монофосфата до гликогена протекают уже знакомым нам путем.

Глава 24. ОБМЕН ЛИПИДОВ

Липиды представляют собой большую группу органических соединений. Все они различаются по своему химическому составу и структуре, но обладают одним общим для них свойством - нерастворимостью в воде. В связи с тем что ферменты, действующие на эти органические соединения, водорастворимы, расщепление и всасывание липидов в пищевом канале характеризуются некоторыми особенностями. Наличие же липидов различной структуры обусловливает различные пути их расщепления и синтеза.

Остановимся на обмене жиров, фосфатидов и стеридов, имеющих наиболее важное биологическое значение.

Обмен липидов, как и углеводов,- многоступенчатый процесс, который состоит из пищеварения, всасывания, транспортирования липидов кровью, внутриклеточного окисления и биосинтеза.

Переваривание липидов

Переваривание триглицеридов. Триглицериды, или нейтральные жиры, являются концентрированными источниками энергии в организме. При окислении 1 г жира высвобождается около 38,9 кДж энергии. Являясь гидрофобными соединениями, жиры резервируются в компактной форме, занимая сравнительно мало места в организме. Вместе с пищей в организм человека ежесуточно поступает до 70 г жиров растительного и животного происхождения. По своей химической природе они являются главным образом триглицеридами.

Расщепление жиров происходит при помощи ферментов, называемых липазами. Слюна не содержит таких ферментов, поэтому в ротовой полости жиры никаким изменениям не подвергаются. В желудке активность липазы очень слабая. Это связано с тем, что в желудке реакция среды сильнокислая (рН = 1,5-2,5), в то время как оптимум действия липазы находится при рН = 7,8 = 8,1. В связи с этим в желудке переваривается всего 3-5 % поступающих жиров.

Переваривание жиров в желудке происходит только у новорожденных и детей грудного возраста. Это связано с тем, что рН среды в желудке новорожденных составляет 5,6, а в этих условиях липаза проявляет большую активность. Кроме того, жир материнского молока, которое является основным продуктом питания детей в этот период, находится в сильно эмульгированном состоянии, а само молоко содержит липолитический фактор, принимающий участие в переваривании жиров.

Однако желудок все же играет определенную роль в процессе переваривания жиров у взрослых. Он регулирует поступление жира в кишки и переваривает белки, освобождая таким путем жир из липопротеидных комплексов пищи.

Основным местом переваривания жиров является двенадцатиперстная кишка и отделы тонкой кишки. Поскольку жиры нерастворимы в воде, а ферменты, расщепляющие их, являются водорастворимыми соединениями, необходимым условием для гидролитического расщепления жиров на составные части является их диспергирование (дробление) с образованием тонкой эмульсии. Диспергирование и эмульгирование жира происходит в результате действия нескольких факторов: желчных кислот, свободных высших жирных кислот, моно- и диглицеридов, а также белков. Этому способствуют также перистальтика кишок и постоянно образующийся углекислый газ, который выделяется при взаимодействии кислых компонентов пищи, поступающих из желудка, с карбонатами кишок, создающими щелочную среду. Образовавшийся углекислый газ «пробулькивает» через пищевые массы, участвуя таким образом в диспергировании жира. Нейтрализации содержимого желудка способствует также поступление в просвет тонкой кишки желчи, обладающей щелочным характером.)

Желчь - вязкая жидкость светло-желтого цвета со специфическим запахом, горькая на вкус. В состав желчи входят желчные кислоты. желчные пигменты, продукты распада гемоглобина, холестерин, лецитин, жиры, некоторые ферменты, гормоны и др. Желчь способствует перистальтике тонкой кишки, оказывает бактериостатическоедействие на ее микрофлору. С желчью выделяются из организма яды. Она является также активатором липолитических ферментов и повышает проницаемость стенки кишок.

Главной составной частью желчи являются желчные кислоты. Они образуются в печени из холестерина и находятся в желчи как в свободном, так и в связанном состоянии, а также в виде натриевых солей. В желчи человека содержится в основном три желчных кислоты Основную массу составляют холевая (3,7,12-тригидроксихола-новая) и дезоксихолевая (3,12-дигидроксихолановая), небольшую часть - литохолевая (3-гидроксихолановая) кислоты, которые являются производными холановой кислоты:

Холевая кислота может находиться в желчи также в связанном состоянии в виде парных соединений с глицином и производным цистеина таурином - соответственно гликохолевой и таурохолевой кислот:

Натриевая соль гликохолевой кислоты

Натриевая соль таурохолевой кислоты

Благодаря наличию желчных кислот происходит снижение поверхностного натяжения липидных капель, что способствует образованию очень тонкой и устойчивой эмульсии диаметр частиц которой составляет около 0,5 мкм. Образованию эмульсии способствуют также моноглицериды и высшие жирные кислоты. Эмульгирование жира приводит к колоссальному увеличению поверхности соприкосновения липазы с водным раствором. Таким образом, чем тоньше эмульсия жиров, тем лучше и быстрее они расщепляются липазой. Кроме того, в виде тонкой эмульсии жиры могут даже всасываться стенкой кишок непосредственно, не расщепляясь на составные части.

В присутствии желчных кислот под действием липазы в просвете тонкой кишки происходит гидролитическое расщепление жиров. В результате этого образуются продукты частичного и полного расщепления жиров - моно- и диглицериды, свободные высшие жирные кислоты и глицерин:

Здесь же содержится и часть нерасщепленного жира в виде очень тонкой эмульсии. Все эти продукты в дальнейшем всасываются стенкой кишок. В этой смеси триглицериды составляют около 10 % , моно-

идисахариды - также 10 % , а основная масса - около 80 % - продукты полного расщепления жиров- глицерин и высшие жирные

Переваривание фосфоглицеридов. Основным местом переваривания фосфатидов также является двенадцатиперстная кишка. Эмульгирование этих липидов происходит под влиянием тех же веществ, что и три-глицеридов. Однако гидролитическое расщепление фосфатидов осуществляется под действием фосфолипаз А, В, С и D. Каждый фермент действует на определенную сложноэфирную связь фосфолипида. Гидролитическое расщепление, например, лецитина происходит следующим образом:

Такому полному расщеплению подвергается незначительная часть фосфатидов, поскольку его промежуточные продукты хорошо растворимы в воде и легко всасываются стенкой кишок. К тому же фосфогли-цериды легко образуют эмульсии, которые также могут всасываться кишечной стенкой.

Переваривание стеридов. Стериды, входящие в состав пищи, эмульгируются под влиянием тех же факторов, что и жиры, после чего подвергаются гидролитическому расщеплению до свободных стеринов и высших жирных кислот. Этот процесс осуществляется под действием фермента холестеринэстеразы.

Всасывание липидов

Врезультате пищеварения жиров, фосфатидов, стеридов в просвете тонкой кишки образуется значительное количество продуктов их частичного и полного гидролитического расщепления: моно- и диглицериды, высшие жирные кислоты, стерины, азотистые основания, фосфорная кислота. Содержится также небольшое количество триглицеридов, находящихся в тонкоэмульгированном состоянии. Все эти продукты всасываются стенкой тонкой кишки.

Такие продукты расщепления, как жирные кислоты и холестерин, плохо растворяясь в воде, образуют с желчными кислотами водорастворимые комплексы- так называемые холеиновые кислоты. Эти кислоты легко проникают в эпителиальные клетки стенки кишок, где расщепляются на составные части. Освобожденные желчные кислоты возвращаются в просвет кишок и снова используются для транспортирования нерастворимых в воде продуктов расщепления жиров.

Часть продуктов расщепления (глицерин, глицеринфосфорная кислота, азотистые основания) хорошо растворимы в воде и легко проникают в эпителиальные клетки. Фосфорная кислота всасывается в клетки эпителия стенки тонкой кишки в виде натриевых и калиевых солей. В основе всасывания липидов лежит ряд сложных физико-химических и биологических процессов, для осуществления которых затрачивается энергия макроэргических связей АТФ.

В эпителиальных клетках слизистой оболочки кишок из всосавшихся продуктов гидролитического расщепления снова синтезируются липиды. Однако этот ресинтез приводит к образованию специфических жиров, характерных для данного организма.

Для образования нейтральных жиров используются высшие жирные кислоты, глицерин, моно- и диглицериды. Одновременно происходит и синтез фосфатидов, для которых используются главным образом глицеринфосфорная кислота, глицериды и диглицериды, а также в небольшом количестве моноглицериды. Из холестерина и высших жирных кислот образуются стериды.

В эпителиальных клетках стенки кишок из синтезированных липидов, а также капель всосавшихся триглицеридов, витаминов (A, D, Е, К) ибелков образуются комплексы размером 150-200 нм, называемые хило микронами. Внутреннее содержимое хиломикрона, представленное образовавшимися различного рода липидами, главным образом триглицеридами, окружено наружной белковой оболочкой, благодаря которой хиломикроны хорошо растворяются в воде. Хило-микроны диффундируют сначала в межклеточную жидкость, затем в лимфатические капилляры и в конце концов попадают в кровяное русло, где под действием гепарина распадаются на мелкие частицы. С током крови они разносятся по всему организму и откладываются в резерв в жировых депо - подкожной и околопочечной клетчатке, сальнике, брыжейке, мышечной ткани. Часть жиров крови используется для пластических целей, как источник химической энергии и т.д.

Таким образом, хиломикроны являются переносчиками образовавшихся в эпителиальных клетках тонкой кишки липидов. При этом они транспортируют в крови главным образом триглицериды.

Наряду с хиломикронами существуют и другие формы транспорта липидов кровью, например α- и β-липопротеиды. Их молекулы представляют собой сложные комплексы липидов с белками. α-Липопро-теиды являются основными транспортными формами фосфатидов, β-липопротеиды- переносчиками холестерина и его эфиров.

Наиболее подвижной формой липидов являются свободные высшие жирные кислоты.

Важная роль в активном транспортировании липидов принадлежит форменным элементам крови. Эритроциты, например, участвуют в переносе фосфатидов и холестерина, лейкоциты- триглицеридов.

Большая роль в обмене липидов принадлежит жировым депо. Исследования показали, что в жировых депо откладывается не только вновь синтезированный в организме специфически видовой жир, но и в небольших количествах чужеродный, т.е. входящий в состав пищи. Опыты, проведенные на голодающих собаках, показали, что пищевые жиры после всасывания поступают сначала в жировые депо, из которых переходят в плазму крови.

Таким образом, жировая ткань не является пассивным депо жиров, состав ее постоянно обновляется за счет липидов, всасывающихся из кишок или синтезируемых в организме.