Що називають відносним показником заломлення. Закони відображення та заломлення світла. Показник заломлення. Ефект заломлення світлового променя

Цифровий ресурс може використовуватися для навчання в рамках програми основний та середньої школи(Базового рівня).

Модель є анімованою ілюстрацією на тему «Закон заломлення світла». Розглядається система вода-повітря. Промальовується хід падаючого, відбитого та заломленого променів.

Коротка теорія

Закон заломлення світла знаходить пояснення у хвильовій фізиці. Згідно з хвильовими уявленнями, заломлення є наслідком зміни швидкості поширення хвиль при переході з одного середовища в інше. Фізичний зміст показника заломлення – це відношення швидкості поширення хвиль у першому середовищі 1 до швидкості їх поширення у другому середовищі 2:

Робота з моделлю

Кнопка Старт/Стоп дозволяє почати або поставити на паузу експеримент, кнопка Скинути – розпочати новий експеримент.

Ця модель може бути застосована як ілюстрація на уроках вивчення нового матеріалу на тему «Закон заломлення світла». На прикладі цієї моделі можна розглянути з учнями перебіг променя при переході з оптично менше щільного середовищаоптично більш щільну.

Приклад планування уроку з використанням моделі

Тема «Проломлення світла»

Мета уроку: розглянути явище заломлення світла, хід променя під час переходу з одного середовища до іншого.

№ п/п Етапи уроку Час, хв Прийоми та методи
1 Організаційний момент 2
2 Перевірка домашнього завданняна тему «Побудова зображення у плоскому дзеркалі» 10 Самостійна робота
3 Пояснення нового матеріалу на тему «Проломлення світла» 20 Пояснення нового матеріалу з використанням моделі «Закон заломлення світла»
4 Вирішення якісних завдань на тему «Закон заломлення світла» 10 Вирішення завдань на дошці
5 Пояснення домашнього завдання 3

Таблиця 1.

Приклади питань та завдань

  • Світло переходить із вакууму в скло, при цьому кут падіння дорівнює α, кут заломлення β. Чому дорівнює швидкість світла у склі, якщо швидкість світла у вакуумі дорівнює c?
  • Показники заломлення води, скла та алмазу щодо повітря дорівнюють 1,33, 1,5, 2,42 відповідно. У якій із цих речовин граничний кут повного відбиття має мінімальне значення?
  • Водолаз розглядає знизу вгору з води лампу, що підвішена на висоті 1 м над поверхнею води. Чому дорівнює висота лампи, що здається, під водою?

Є ніщо інше, як відношення синуса кута падіння до синуса кута заломлення

Показник заломлення залежить від властивостей речовини та довжини хвилі випромінювання, для деяких речовин показник заломленнядосить сильно змінюється при зміні частоти електромагнітних хвильвід низьких частот до оптичних і далі, а також може ще різкіше змінюватися в певних областях частотної шкали. За умовчанням зазвичай мають на увазі оптичний діапазон або діапазон, що визначається контекстом.

Величина n, за інших рівних умов, зазвичай менше одиниці при переході променя з середовища більш щільного в середовище менш щільне, і більше одиниці при переході променя з середовища менш щільного в середовище більш щільного (наприклад, з газу або з вакууму в рідину або тверде тіло). Є винятки з цього правила, і тому прийнято називати середовище оптично більш менш щільним, ніж інше (не плутати з оптичною щільністю як мірою непрозорості середовища).

У таблиці наведено деякі значення показника заломлення для деяких середовищ:

Середовище, що має великий показник заломлення, називається оптично більш щільним. Зазвичай вимірюється показник заломлення різних середовищщодо повітря. Абсолютний показник заломлення повітря дорівнює. Таким чином, абсолютний показник заломлення будь-якого середовища пов'язаний з її показником заломлення щодо повітря формулою:

Показник заломлення залежить від довжини хвилі світла, тобто від кольору. Різним кольорам відповідають різні показники заломлення. Це явище, яке називається дисперсією, відіграє важливу роль в оптиці.

Звернемося до докладнішому розгляду показника заломлення, введеного нами в §81 під час формулювання закону заломлення.

Показник заломлення залежить від оптичних властивостей і того середовища, з якого промінь падає, і того середовища, в яке він проникає. Показник заломлення, отриманий у тому випадку, коли світло з вакууму падає на якесь середовище, називається абсолютним показником заломлення даного середовища.

Мал. 184. Відносний показник заломлення двох середовищ:

Нехай абсолютний показник заломлення першого середовища є другий середовища - . Розглядаючи заломлення на межі першої та другої середовищ, переконаємося, що показник заломлення при переході з першого середовища в друге, так званий відносний показник заломлення, дорівнює відношенню абсолютних показників заломлення другої та першої середовищ:

(Рис. 184). Навпаки, при переході з другого середовища до першого маємо відносний показник заломлення

Встановлений зв'язок між відносним показником заломлення двох середовищ та їх абсолютними показниками заломлення міг би бути виведений і теоретичним шляхом, без нових дослідів, подібно до того, як це можна зробити для закону оборотності (§82),

Середовище, що має великий показник заломлення, називається оптично більш щільним. Зазвичай вимірюється показник заломлення різних середовищ щодо повітря. Абсолютний показник заломлення повітря дорівнює. Таким чином, абсолютний показник заломлення будь-якого середовища пов'язаний з її показником заломлення щодо повітря формулою

Таблиця 6. Показник заломлення різних речовинщодо повітря

Рідини

Тверді речовини

Речовина

Речовина

Спирт етиловий

Сірковуглець

Гліцерин

Скло (легкий крон)

Рідкий водень

Скло (важкий флінт)

Рідкий гелій

Показник заломлення залежить від довжини хвилі світла, тобто його кольору. Різним кольорам відповідають різні показники заломлення. Це явище, яке називається дисперсією, відіграє важливу роль в оптиці. Ми неодноразово матимемо справу з цим явищем у наступних розділах. Дані, наведені у табл. 6, відносяться до жовтого світла.

Цікаво відзначити, що закон відображення може бути формально записаний у тому вигляді, як і закон заломлення. Згадаймо, що ми домовилися завжди вимірювати кути від перпендикуляра до відповідного променя. Отже, слід вважати кут падіння і кут відображення мають протилежні знаки, тобто. закон відображення можна записати у вигляді

Порівнюючи (83.4) із законом заломлення, ми бачимо, що закон відображення можна розглядати як окремий випадок закону заломлення при . Ця формальна подібність законів відображення та заломлення приносить велику користь при вирішенні практичних завдань.

У попередньому викладі показник заломлення мав сенс константи середовища, що не залежить від інтенсивності світла, що проходить через неї. Таке тлумачення показника заломлення цілком природно, проте у разі більших інтенсивностей випромінювання, досяжних під час використання сучасних лазерів, воно виправдовується. Властивості середовища, якою проходить сильне світлове випромінювання, у разі залежить від його інтенсивності. Як кажуть, середовище стає нелінійним. Нелінійність середовища проявляється, зокрема, у цьому, що світлова хвиля великий інтенсивності змінює показник заломлення. Залежність показника заломлення від інтенсивності випромінювання має вигляд

Тут – звичайний показник заломлення, а – нелінійний показник заломлення, – множник пропорційності. Додатковий член у цій формулі може бути як позитивним, і негативним.

Відносні зміни показника заломлення порівняно невеликі. При нелінійний показник заломлення. Проте навіть такі невеликі зміни показника заломлення відчутні: вони виявляються у своєрідному явище самофокусування світла.

Розглянемо середовище із позитивним нелінійним показником заломлення. У цьому випадку області підвищеної інтенсивності світла є одночасною областями збільшеного показника заломлення. Зазвичай у реальному лазерному випромінюваннірозподіл інтенсивності перерізу пучка променів неоднорідно: інтенсивність максимальна по осі і плавно спадає до країв пучка, як це показано на рис. 185 суцільними кривими. Подібний розподіл описує також зміну показника заломлення перерізу кювети з нелінійним середовищем, вздовж осі якої поширюється лазерний промінь. Показник заломлення, найбільший по осі кювети, плавно спадає до стінок (штрихові криві на рис. 185).

Пучок променів, що виходить з лазера паралельно осі, потрапляючи в середу зі змінним показником заломлення, відхиляється в той бік, де більше. Тому підвищена інтенсивність поблизу осп кювети призводить до концентрації світлових променів у цій галузі, показаної схематично в перерізах та на рис. 185, а це призводить до подальшого зростання. Зрештою ефективний переріз світлового пучка, що проходить через нелінійне середовище, суттєво зменшується. Світло проходить як би вузьким каналом з підвищеним показником заломлення. Таким чином, лазерний пучок променів звужується, нелінійне середовище під дією інтенсивного випромінювання діє як лінза, що збирає. Це явище називається самофокусування. Його можна спостерігати, наприклад, у рідкому нітробензолі.

Мал. 185. Розподіл інтенсивності випромінювання та показника заломлення по перерізу лазерного пучка променів на вході в кювету (а), поблизу вхідного торця (), у середині (), поблизу вихідного торця кювети ()

Закони фізики відіграють дуже важливу роль при проведенні розрахунків для планування певної стратегії виробництва будь-якого товару або при складанні проекту спорудження різного призначення. Багато величин є розрахунковими, отже перед стартом робіт із планування виробляються вимірювання та обчислення. Наприклад, показник заломлення скла дорівнює відношенню синуса кута падіння до синуса кута заломлення.

Так що спочатку йде процес вимірювання кутів, потім обчислюють їх синус, а вже потім можна отримати шукане значення. Незважаючи на наявність табличних даних, варто щоразу проводити додаткові розрахунки, тому що в довідниках найчастіше використовуються ідеальні умови, яких домогтися реального життяпрактично неможливо. Тому насправді показник обов'язково відрізнятиметься від табличного, а в деяких ситуаціях це має важливе значення.

Абсолютний показник

Абсолютний показник заломлення залежить від марки скла, тому що на практиці є безліч варіантів, що відрізняються за складом і ступенем прозорості. У середньому він становить 1,5 і коливається навколо цього значення на 0,2 у той чи інший бік. В окремих випадках можуть бути відхилення від цієї цифри.

Знову ж таки, якщо важливий точний показник, то без додаткових вимірів не обійтися. Але і вони не дають стовідсотково достовірного результату, тому що на підсумкове значення впливатиме положення сонця на небосхилі та хмарність у день вимірювань. На щастя, в 99,99% випадку досить просто знати, що показник заломлення такого матеріалу, як скло більше одиниці і менше двійки, а решта десятих і сотих частин не відіграють ролі.

На форумах, які займаються допомогою у вирішенні завдань з фізики, часто з'являється питання, який показник заломлення скла та алмазу? Багато хто думає, що якщо ці дві речовини схожі зовні, то й властивості у них мають бути приблизно однаковими. Але це помилка.

Максимальне заломлення у скла перебуватиме на рівні близько 1,7, тоді як у алмазу цей показник досягає позначки 2,42. Даний дорогоцінний камінь є одним з небагатьох матеріалів на Землі, рівень заломлення перевищує позначку 2. Це пов'язано з його кристалічною будовою і великим рівнем розкиду світлових променів. Огранювання грає у змінах табличного значення мінімальну роль.

Відносний показник

Відносний показник для деяких середовищ можна охарактеризувати так:

  • - показник заломлення скла щодо води становить приблизно 1,18;
  • - показник заломлення цього матеріалу відносно повітря дорівнює значенню 1,5;
  • - показник заломлення щодо спирту – 1,1.

Вимірювання показника та обчислення відносного значення проводяться за відомим алгоритмом. Щоб знайти відносний параметр, потрібно розділити одне табличне значення інше. Або ж зробити дослідні розрахунки для двох середовищ, а потім уже ділити отримані дані. Такі операції часто проводяться на лабораторних заняттях з фізики.

Визначення показника заломлення

Визначити показник заломлення скла практично досить складно, оскільки потрібні високоточні прилади для вимірювання початкових даних. Будь-яка похибка зростатиме, оскільки під час обчислення використовуються складні формули, які потребують відсутності помилок.

Взагалі цей коефіцієнт показує, у скільки разів уповільнюється швидкість поширення світлових променів при проходженні через певну перешкоду. Тому він характерний лише для прозорих матеріалів. За еталонне значення, тобто за одиницю, взято показник заломлення газів. Це було зроблено для того, щоб можна відштовхуватися від якогось значення при розрахунках.

Якщо сонячний промінь падає на поверхню скла з показником заломлення, що дорівнює табличному значенню, то можна змінити його кількома способами:

  • 1. Поклеїти зверху плівку, у якої коефіцієнт заломлення буде вищим, ніж у скла. Цей принцип використовується в тонуванні вікон автомобіля, щоб покращити комфорт пасажирів та дозволити водію чіткіше спостерігати за дорожньою обстановкою. Також плівка стримуватиме і ультрафіолетове випромінювання.
  • 2. Пофарбувати скло фарбою. Так роблять виробники дешевих сонцезахисних окулярів, але варто врахувати, що це може бути шкідливим для зору. У хороших моделях скла відразу виробляються кольоровими за спеціальною технологією.
  • 3. Завантажити скло в будь-яку рідину. Це корисно винятково для дослідів.

Якщо промінь світла переходить зі скла, то показник заломлення на наступному матеріалі розраховується за допомогою відносного коефіцієнта, який можна отримати, зіставивши між собою табличні значення. Ці обчислення дуже важливі при проектуванні оптичних систем, які мають практичне або експериментальне навантаження. Помилки тут неприпустимі, тому що вони призведуть до неправильної роботи всього приладу, і тоді будь-які отримані дані будуть марні.

Щоб визначити швидкість світла у склі з показником заломлення, потрібно абсолютне значення швидкості у вакуумі розділити на величину заломлення. Вакуум використовується як еталонне середовище, тому що там не діє заломлення через відсутність будь-яких речовин, які могли б заважати безперешкодному руху світлових променів по заданій траєкторії.

У будь-яких розрахункових показниках швидкість буде меншою, ніж у еталонному середовищі, оскільки коефіцієнт заломлення завжди більше одиниці.

Заломлення або рефракція - це явище, при якому відбувається зміна спрямованості променя світла, або інших хвиль, коли вони переходять кордон, що розділяє два середовища, як прозорі (пропускають ці хвилі), так і всередині середовища, в якому безперервно змінюються властивості.

З явищем заломлення ми стикаємося досить часто й сприймаємо звичайним явищем: можемо побачити, що паличка, що у прозорому склянці з пофарбованої рідиною, «переломлена» у місці поділу повітря та води (рис. 1). При заломленні та відображенні світла під час дощу ми радіємо, побачивши веселку (рис. 2).

Показник заломлення – важлива характеристика речовини, пов'язана з її фізико-хімічними властивостями. Він залежить від значень температур, і навіть від довжини світлових хвиль, у яких проводиться визначення. За даними контролю якості у розчині на показник заломлення впливає концентрація розчиненої у ньому речовини, і навіть природа розчинника. Зокрема, на показник заломлення кров'яної сироватки впливає кількість білка, що міститься в ній. Це відбувається через те, що при різної швидкостіпоширення світлових променів у середовищах, що мають різну щільність, їх напрямок змінюється у місці розділу двох середовищ. Якщо ми розділимо світлову швидкість у вакуумі на світлову швидкість у досліджуваній речовині, вийде абсолютний показник заломлення (індекс рефракції). Практично визначається показник заломлення відносний (n ), що є відношенням світлової швидкості в повітрі до світлової швидкості в досліджуваній речовині.

Кількісно показник заломлення визначають, використовуючи спеціальний прилад рефрактометр.

Рефрактометрія - один із найлегших методів фізичного аналізуі може застосовуватися в лабораторіях контролю якості під час виробництва хімічної, харчової, біологічно активних добавок до їжі, косметичної та інших видів продукції з мінімальними витратами часу та кількості досліджуваних проб.

Конструкція рефрактометра полягає в тому, що промені світла повністю відбиваються, коли переходять через межу двох середовищ (одне їх – це призма зі скла, інша – досліджуваний розчин) (рис. 3).

Мал. 3. Схема рефрактометра

Від джерела (1) світловий промінь падає на дзеркальну поверхню (2), потім, відбиваючись, переходить у верхню призму освітлювальну (3), потім у нижню вимірювальну призму (4), яка виготовлена ​​зі скла, що володіє великим показником заломлення. Між призмами (3) та (4) за допомогою капіляра наносять 1–2 крапельки проби. Щоб не завдати призмі механічних пошкоджень, необхідно не торкатися капіляром поверхні.

В окулярі (9) бачать поле з перехрещеними лініями, щоб встановити межу розділу. Переміщуючи окуляр, точку перетину полів потрібно поєднати з межею розділу (рис. 4). Площина призми (4) відіграє роль межі розділу, на поверхні якої заломлюється світловий промінь. Так як промені розсіюються, межа світла і тіні виходить розпливчастою, райдужною. Це усувається компенсатором дисперсії (5). Потім промінь пропускається об'єктивом (6) та призмою (7). На пластині (8) є візирні штрихи (дві прямі лінії, пересічені хрестоподібно), а також шкала з показниками заломлення, яка спостерігається в окуляр (9). Нею і відраховується показник заломлення.

Лінія поділу меж полів буде відповідати куту внутрішнього повного відображення, що залежить від показника заломлення проби.

Рефрактометрія застосовується з метою встановлення чистоти та справжності речовини. Цей метод застосовується також, щоб при контролі якості визначити концентрацію речовин у розчинах, яку обчислюють за градуювальним графіком (графік, що показує залежність показника заломлення проби від її концентрації).

У компанії «КорольовФарм» показник заломлення визначається згідно із затвердженою нормативною документацією при вхідному контролі сировини, в екстрактах власного виробництва, а також при випуску готової продукції. Визначення проводиться кваліфікованими співробітниками акредитованої фізико-хімічної лабораторії за допомогою рефрактометра ІРФ – 454 Б2М.

Якщо за результатами вхідного контролю сировини показник заломлення не відповідає необхідним вимогам, відділом контролю якості оформляється Акт про невідповідність, виходячи з якого дана партія сировини повертається постачальнику.

Методика визначення

1. Перед початком вимірювань перевіряється чистота поверхонь призм, що стикаються між собою.

2. Перевірка точки нуля. На поверхню призми вимірювальної наносимо 2÷3 краплі дистильованої води, обережно закриваємо призмою освітлювальної. Відкриваємо освітлювальне віконце і, застосовуючи дзеркало, встановлюємо світлове джерело найбільш інтенсивно. Обертаючи гвинти окуляра, отримуємо в його полі зору чітке, різке розмежування темного та світлого полів. Обертаємо гвинт і наводимо лінію тіні і світла так, щоб вона збіглася з точкою, в якій перетинаються лінії у верхньому вікні окуляра. На вертикальній лінії в нижньому вікні окуляра бачимо потрібний результат – показник заломлення дистильованої води при 20 ° С (1,333). Якщо показання інші, встановлюємо гвинтом показник заломлення значення 1,333, і за допомогою ключа (зняти гвинт регулювальний) наводимо межу тіні і світла до місця точки перетину ліній.

3. Визначаємо коефіцієнт заломлення. Піднімаємо камеру призми освітлювальним і папером фільтрувальним або марлевою серветкою знімаємо воду. Далі наносимо 1-2 краплі випробуваного розчину на поверхню вимірювальної призми і закриваємо камеру. Обертаємо гвинти до моменту, поки межі тіні і світла не збігатимуться з точкою перетину ліній. На вертикальній лінії в нижньому вікні окуляра бачимо потрібний результат - показник заломлення досліджуваної проби. Проводимо підрахунок коефіцієнта заломлення за шкалою в нижньому вікні окуляра.

4. Використовуючи градуювальний графік, встановлюємо взаємозв'язок між концентрацією розчину та показником заломлення. Щоб побудувати графік, необхідно приготувати стандартні розчини кількох концентрацій, використовуючи препарати хімічно чистих речовин, виміряти їх показники заломлення і відкласти отримані значення на осі ординат, на осі абсцис відкласти відповідні концентрації розчинів. Необхідно вибирати інтервали концентрацій, при яких між концентрацією та показником заломлення спостерігається лінійна залежність. Вимірюємо показник заломлення досліджуваної проби та за допомогою графіка визначаємо його концентрацію.