Газ у атмосфері землі. Шари атмосфери порядку від поверхні землі. Полярне сяйво, що змінюється

Атмосфера - те, що забезпечує можливість життя Землі. Найперші відомості та факти про атмосферу ми отримуємо ще в початковій школі. У старших класах ми докладніше знайомимося з цим поняттям під час уроків географії.

Поняття земної атмосфери

Атмосфера є у Землі, а й в інших небесних тіл. Так називають газову оболонку, що оточує планети. Склад цього газового шару різних планет значно відрізняється. Давайте розглянемо основні відомості та факти про так зване повітря.

Найважливішою її складовою є кисень. Деякі помилково думають, що земна атмосфера складається повністю з кисню, але насправді повітря – це суміш газів. У його складі 78% азоту та 21% кисню. Решта відсотка включає озон, аргон, вуглекислий газ, водяні пари. Нехай відсоткове співвідношення цих газів мало, але вони виконують важливу функцію - поглинають значну частину сонячної променистої енергії, тим самим не дають світилу перетворити все живе на нашій планеті на попіл. Властивості атмосфери змінюються залежно від висоти. Наприклад, на висоті 65 км азот становить 86%, а кисень – 19%.

Склад атмосфери Землі

  • Вуглекислий газнеобхідний харчування рослин. У атмосфері він у результаті процесу дихання живих організмів, гниття, горіння. Відсутність їх у складі атмосфери унеможливило б існування будь-яких рослин.
  • Кисень- Життєво важливий для людини компонент атмосфери. Його наявність є умовою існування всіх живих організмів. Він становить близько 20% загального обсягу атмосферних газів.
  • Озон– це природний поглинач сонячного ультрафіолетового випромінювання, яке згубно впливає на живі організми. Більшість його формує окремий шар атмосфери - озоновий екран. Останнім часом діяльність людини призводить до того, що починає поступово руйнуватися, але оскільки вона має велику важливість, то ведеться активна робота щодо її збереження та відновлення.
  • Водяна паравизначає вологість повітря. Його зміст може бути різним залежно від різних факторів: температури повітря, територіального розташування, сезону. При низькій температурі водяної пари в повітрі зовсім мало, може бути менше одного відсотка, а при високій його кількість досягає 4%.
  • Крім усього вищепереліченого, у складі земної атмосфери завжди є певний відсоток твердих та рідких домішок. Це сажа, попіл, морська сіль, пил, краплі води, мікроорганізми. Потрапляти у повітря можуть як природним, і антропогенним шляхом.

Шари атмосфери

І температура, і густина, і якісний склад повітря неоднаковий на різній висоті. Через це прийнято виділяти різні верстви атмосфери. Кожен має свою характеристику. Давайте дізнаємося, які шари атмосфери розрізняють:

  • Тропосфера - цей шар атмосфери знаходиться найближче до Землі. Висота його – 8-10 км над полюсами та 16-18 км – у тропіках. Тут знаходиться 90% всієї водяної пари, яка є в атмосфері, тому відбувається активне утворення хмар. Також у цьому прошарку спостерігаються такі процеси, як рух повітря (вітру), турбулентність, конвекція. Температура коливається від +45 градусів опівдні у теплу пору року в тропіках до -65 градусів на полюсах.
  • Стратосфера – другий за віддаленістю від шар атмосфери. Знаходиться на висоті від 11 до 50 км. У нижньому шарі стратосфери температура приблизно -55, у бік віддалення Землі вона підвищується до +1˚С. Ця область називається інверсією і є межею стратосфери та мезосфери.
  • Мезосфера знаходиться на висоті від 50 до 90 км. Температура на її нижньому кордоні - близько 0, на верхній досягає -80...-90? Метеорити, що потрапляють в атмосферу Землі, повністю згоряють у мезосфері, тому тут відбуваються світіння повітря.
  • Термосфера має товщину приблизно 700 км. У цьому вся шарі атмосфери виникають північні сяйва. З'являються вони рахунок під впливом космічного випромінювання і радіації, що виходить від Сонця.
  • Екзосфера – це зона розсіювання повітря. Тут концентрація газів невелика і відбувається їх поступовий відхід у міжпланетний простір.

Кордоном між земною атмосферою та космічними просторами прийнято вважати кордон у 100 км. Цю межу називають лінією Кармана.

Тиск атмосфери

Слухаючи прогноз погоди, часто чуємо показники атмосферного тиску. Але що означає тиск атмосфери, і як це може вплинути на нас?

Ми розібралися, що повітря складається з газів та домішок. Кожна з цих складових має свою вагу, а отже, і атмосфера не є невагомою, як вважали до XVII століття. Атмосферний тиск – це сила, з якою всі шари атмосфери тиснуть на поверхню Землі та на всі предмети.

Вчені провели складні підрахунки та довели, що на один квадратний метр площі атмосфера тисне із силою 10 333 кг. Отже, людське тіло піддається тиску повітря, вага якого дорівнює 12-15 тонн. Чому ж ми цього не відчуваємо? Рятує нас свій внутрішній тиск, який і врівноважує зовнішній. Можна відчути тиск атмосфери, перебуваючи в літаку або високо в горах, оскільки атмосферний тиск на висоті значно менший. При цьому можливий фізичний дискомфорт, закладання вух, запаморочення.

Про атмосферу, що оточує, можна сказати багато всього. Ми знаємо про неї безліч цікавих фактів, і деякі з них можуть здаватися дивовижними:

  • Вага земної атмосфери складає 5300000000000 000 тонн.
  • Вона сприяє передачі звуку. На висоті більше 100 км ця властивість зникає через зміну складу атмосфери.
  • Рух атмосфери спровокований нерівномірним нагріванням Землі.
  • Для визначення температури повітря використовують термометр, а для того, щоб дізнатися про силу тиску атмосфери, - барометр.
  • Наявність атмосфери рятує нашу планету від 100 тонн метеоритів щодня.
  • Склад повітря був фіксованим кілька сотень мільйонів років, але почав змінюватися з початком бурхливої ​​виробничої діяльності.
  • Вважається, що атмосфера простягається нагору на висоту 3000 км.

Значення атмосфери для людини

Фізіологічна зона атмосфери становить 5 км. На висоті 5000 м над рівнем моря у людини починає проявлятися кисневе голодування, що виявляється у зниженні його працездатності та погіршенні самопочуття. Це показує те, що людина не зможе вижити у просторі, де немає цієї дивовижної суміші газів.

Усі відомості та факти про атмосферу лише підтверджують її важливість для людей. Завдяки її наявності і виникла можливість розвитку життя Землі. Вже сьогодні, оцінивши масштаби шкоди, яку людство здатне своїми діями завдавати повітря, що дає життя, нам слід задуматися про подальші заходи збереження та відновлення атмосфери.

Газова оболонка, що оточує нашу планету, Земля, відома як атмосфера, складається з п'яти основних шарів. Ці шари беруть початок на поверхні планети, від рівня моря (іноді нижче) і піднімаються до космічного простору в наступній послідовності:

  • Тропосфера;
  • Стратосфера;
  • мезосфера;
  • Термосфера;
  • Екзосфера.

Схема основних верств атмосфери Землі

У проміжку між кожним з цих п'яти основних шарів знаходяться перехідні зони, звані «паузами», де відбуваються зміни температури, складу і щільності повітря. Разом із паузами, атмосфера Землі загалом включає 9 шарів.

Тропосфера: де відбувається погода

Зі всіх шарів атмосфери тропосфера є тим, з яким ми найбільше знайомі (усвідомлюєте ви це чи ні), тому що ми живемо на її дні – поверхні планети. Вона огортає поверхню Землі і простягається на кілька кілометрів. Слово тропосфера означає "зміна кулі". Дуже відповідна назва, тому що цей шар, де відбувається наша повсякденна погода.

Починаючи з поверхні планети тропосфера піднімається на висоту від 6 до 20 км. Нижня третина шару, що найближча до нас, містить 50% усіх атмосферних газів. Це єдина частина всього складу атмосфери, що дихає. Завдяки тому, що повітря нагрівається знизу земною поверхнею, що поглинає теплову енергію Сонця, зі збільшенням висоти температура та тиск тропосфери знижуються.

На вершині знаходиться тонкий шар, званий тропопаузою, який є лише буфером між тропосферою і стратосферою.

Стратосфера: будинок озону

Стратосфера – наступний шар атмосфери. Він тягнеться від 6-20 км до 50 км над земною поверхнею Землі. Це шар, у якому літають більшість комерційних авіалайнерів та подорожують повітряні кулі.

Тут повітря не тече вгору і вниз, а рухається паралельно до поверхні в дуже швидких повітряних потоках. У міру того, як ви піднімаєтеся, температура збільшується, завдяки великій кількості природного озону (O 3) - побічного продукту сонячної радіації та кисню, який має здатність поглинати шкідливі ультрафіолетові промені сонця (будь-яке підвищення температури з висотою в метеорології, відоме як "інверсія") .

Оскільки стратосфера має більш теплі температури внизу і прохолодніші нагорі, конвекція (вертикальні переміщення повітряних мас) зустрічається рідко в цій частині атмосфери. Фактично, ви можете розглядати зі стратосфери бурю, що бушує в тропосфері, оскільки шар діє як «ковпачок» для конвекції, через який не проникають штормові хмари.

Після стратосфери знову слідує буферний шар, цього разу званий стратопаузою.

Мезосфера: середня атмосфера

Мезосфера знаходиться приблизно на відстані 50-80 км від Землі. Верхня область мезосфери є найхолоднішим природним місцем Землі, де температура може опускатися нижче -143° C.

Термосфера: верхня атмосфера

Після мезосфери і мезопаузи слідує термосфера, розташована між 80 і 700 км над поверхнею планети, і містить менше 0,01% всього повітря в атмосферній оболонці. Температури тут досягають до +2000 ° C, але через сильну розрідженість повітря і брак молекул газу для перенесення тепла, ці високі температури сприймаються, як дуже холодні.

Екзосфера: кордон атмосфери та космосу

На висоті близько 700-10 000 км над земною поверхнею знаходиться екзосфера - зовнішній край атмосфери, що межує з космосом. Тут метеорологічні супутники обертаються довкола Землі.

Як щодо іоносфери?

Іоносфера є окремим шаром, а насправді цей термін використовується для позначення атмосфери на висоті від 60 до 1000 км. Вона включає найвищі частини мезосфери, всю термосферу і частину екзосфери. Іоносфера дістала свою назву, тому що в цій частині атмосфери випромінювання Сонця іонізується, коли проходить магнітні поля Землі на і . Це явище спостерігається із землі як північне сяйво.

Точний розмір атмосфери невідомий, оскільки її верхня межа не простежується. Однак будову атмосфери вивчено достатньо для того, щоб кожен міг отримати уявлення про те, як влаштована газова оболонка нашої планети.

Вчені, які вивчають фізику атмосфери, визначають її як область навколо Землі, що обертається разом із планетою. ФАІ дає таке визначення:

  • кордон між космосом та атмосферою проходить по лінії Кишені. Лінія ця, за визначенням тієї ж організації, - це висота над рівнем моря, що знаходиться на висоті 100 км.

Все, що вище за цю лінію - космічний простір. У міжпланетний простір атмосфера переходить поступово, саме тому є різні уявлення про її розміри.

З нижньою межею атмосфери все набагато простіше - вона проходить поверхнею земної кори і водної поверхні Землі - гідросферою. При цьому межа, можна сказати, зливається із земною та водною поверхнею, тому що частинки там також розчинені частинки повітря.

Які шари атмосфери входять до розміру Землі

Цікавий факт: взимку вона знаходиться нижче, влітку - вище.

Саме в цьому шарі виникає турбулентність, антициклони та циклони, утворюються хмари. Саме ця сфера відповідає за формування погоди, у ній розташовано приблизно 80% усіх повітряних мас.

Тропопаузою називають шар, у якому з висотою немає зниження температури. Вище за тропопаузою, на висоті вище 11 і до 50 км знаходиться стратосфера. У стратосфері знаходиться шар озону, який, як відомо, захищає планету від ультрафіолетових променів. Повітря в цьому шарі розряджене, пояснюється характерний фіолетовий відтінок неба. Швидкість повітряних потоків тут може сягати 300 км/год. Між стратосферою та мезосферою знаходиться стратопауза – прикордонна сфера, в якій має місце температурний максимум.

Наступний шар - мезосфера. Вона тягнеться до висот 85-90 кілометрів. Колір неба в мезосфері – чорний, тому зірки можна спостерігати навіть вранці та вдень. Там відбуваються найскладніші фотохімічні процеси, під час яких виникає свічення атмосфери.

Між мезосферою і наступним шаром, термосферою знаходиться мезопауза. Його визначають як перехідний шар, у якому спостерігається температурний мінімум. Вище на висоті 100 кілометрів над рівнем моря знаходиться лінія Кармана. Вище за цю лінію знаходяться термосфера (межа висоти 800км) та екзосфера, яку також називають «зоною розсіювання». Вона на висоті приблизно 2-3 тисячі кілометрів переходить у близькокосмічний вакуум.

Враховуючи те, що верхній шар атмосфери чітко не простежується, її точний розмір вирахувати неможливо. Крім того, в різних країнах існують організації, які дотримуються різних думок щодо цього. Слід зазначити, що лінію Кишеніможна вважати кордоном земної атмосфери лише умовно, оскільки джерела використовують різні позначки кордонів. Так, у деяких джерелах можна знайти відомості про те, що верхня межа проходить на висоті 2500-3000 км.

NASA для розрахунків використовує позначку 122 кілометри. Нещодавно були проведені експерименти, які уточнили кордон, як розташований на позначці 118км.

АТМОСФЕРА
газова оболонка, що оточує небесне тіло. Її характеристики залежать від розміру, маси, температури, швидкості обертання та хімічного складу даного небесного тіла, і навіть визначаються історією його формування починаючи з моменту зародження. Атмосфера Землі утворена сумішшю газів, яка називається повітрям. Її основні складові - азот та кисень у співвідношенні приблизно 4:1. На людину впливає переважно стан нижніх 15-25 км атмосфери, оскільки у цьому нижньому шарі зосереджена переважна більшість повітря. Наука, що вивчає атмосферу, називається метеорологією, хоча предметом цієї науки є також погода та її вплив на людину. Стан верхніх шарів атмосфери, розташованих на висотах від 60 до 300 і навіть 1000 км від Землі, також змінюється. Тут розвиваються сильні вітри, шторми та виявляються такі дивовижні електричні явища, як полярні сяйва. Чимало з перелічених феноменів пов'язані з потоками сонячної радіації, космічного випромінювання, і навіть магнітним полем Землі. Високі шари атмосфери - це й хімічна лабораторія, оскільки у умовах, близьких до вакууму, деякі атмосферні гази під впливом потужного потоку сонячної енергії входять у хімічні реакції. Наука, що вивчає ці взаємопов'язані явища та процеси, називається фізикою високих верств атмосфери.
ЗАГАЛЬНА ХАРАКТЕРИСТИКА АТМОСФЕРИ ЗЕМЛІ
Розміри.Поки ракети-зонди та штучні супутники не досліджували зовнішні шари атмосфери на відстанях, що в кілька разів перевершують радіус Землі, вважалося, що в міру віддалення від земної поверхні атмосфера поступово стає більш розрідженою і плавно переходить у міжпланетний простір. Наразі встановлено, що потоки енергії з глибоких верств Сонця проникають у космічний простір далеко за орбіту Землі, аж до зовнішніх меж Сонячної системи. Цей т.зв. сонячний вітер обтікає магнітне поле Землі, формуючи подовжену "порожнину", всередині якої зосереджена земна атмосфера. Магнітне поле Землі помітно звужено зі зверненої до Сонця денної сторони і утворює довгу мову, що ймовірно виходить за межі орбіти Місяця, - з протилежного, нічного боку. Кордон магнітного поляЗемлі називається магнітопаузою. З денного боку цей кордон проходить на відстані близько семи земних радіусів від поверхні, але в періоди підвищеної сонячної активності виявляється ще ближче до Землі. Магнітопауза є одночасно межею земної атмосфери, зовнішня оболонка якої називається також магнітосферою, тому що в ній зосереджені заряджені частинки (іони), рух яких зумовлений магнітним полем Землі. Загальна вага газів атмосфери становить приблизно 4,5*1015 т. Таким чином, "вага" атмосфери, що припадає на одиницю площі, або атмосферний тиск становить приблизно 11 т/м2.
Значення життя.Зі сказаного вище випливає, що Землю від міжпланетного простору відокремлює потужний захисний шар. Космічний простір пронизаний потужним ультрафіолетовим і рентгенівським випромінюванням Сонця і ще більш жорстким космічним випромінюванням, і ці види радіації є згубними для всього живого. На зовнішній межі атмосфери інтенсивність випромінювання смертоносна, але значна його частина затримується атмосферою далеко від Землі. Поглинанням цього випромінювання пояснюються багато властивостей високих шарів атмосфери і особливо електричні явища, що там відбуваються. Найнижчий, приземний шар атмосфери особливо важливий для людини, яка мешкає у місці контакту твердої, рідкої та газоподібної оболонок Землі. Верхня оболонка "твердої" Землі називається літосферою. Близько 72% поверхні Землі покрито водами океанів, що становлять більшу частину гідросфери. Атмосфера межує як із літосферою, так і з гідросферою. Людина живе на дні повітряного океану і поблизу або вище за рівень океану водного. Взаємодія цих океанів одна із важливих чинників, визначальних стан атмосфери.
склад.Нижні шари атмосфери складаються із суміші газів (див. табл.). Крім наведених у таблиці, у вигляді невеликих домішок у повітрі присутні й інші гази: озон, метан, такі речовини, як оксид вуглецю (СО), оксиди азоту та сірки, аміак.

СКЛАД АТМОСФЕРИ


У високих прошарках атмосфери склад повітря змінюється під впливом жорсткого випромінювання Сонця, що призводить до розпаду молекул кисню на атоми. Атомарний кисень є основним компонентом найвищих шарів атмосфери. Нарешті, у найбільш віддалених від Землі шарах атмосфери головними компонентами стають найлегші гази - водень і гелій. Оскільки основна маса речовини зосереджена в нижніх 30 км., то зміни складу повітря на висотах більше 100 км. помітного впливузагальний склад атмосфери.
Енергообмін.Сонце є основним джерелом енергії, що надходить на Землю. Перебуваючи на відстані прибл. 150 млн. км від Сонця, Земля отримує приблизно одну двомільярдну частину енергії, що випромінюється ним, головним чином у видимій частині спектру, яку людина називає "світлом". Більшість цієї енергії поглинається атмосферою та літосферою. Земля також випромінює енергію, переважно у вигляді довгохвильової інфрачервоної радіації. Таким чином встановлюється рівновага між енергією, що отримується від Сонця, нагріванням Землі та атмосфери і зворотним потоком теплової енергії, що випромінюється в простір. Механізм цієї рівноваги вкрай складний. Пил і молекули газів розсіюють світло, частково відбиваючи їх у світовий простір. Ще більшу частину радіації, що приходить, відображають хмари. Частина енергії поглинається безпосередньо молекулами газів, але переважно - гірськими породами, рослинністю і поверхневими водами. Водяна пара та вуглекислий газ, присутні в атмосфері, пропускають видиме випромінювання, але поглинають інфрачервоне. Теплова енергія накопичується головним чином нижніх шарах атмосфери. Подібний ефект виникає у теплиці, коли скло пропускає світло всередину та ґрунт нагрівається. Оскільки скло відносно непрозоре для інфрачервоної радіації, у парнику акумулюється тепло. Нагрів нижніх шарів атмосфери за рахунок присутності водяної пари та вуглекислого газу часто називають парниковим ефектом. Істотну роль збереженні тепла в нижніх шарах атмосфери грає хмарність. Якщо хмари розсіюються або зростає прозорість повітряних мас, температура неминуче знижується у міру того, як поверхня Землі безперешкодно випромінює теплову енергію в навколишній простір. Вода, що знаходиться на поверхні Землі, поглинає сонячну енергію і випаровується, перетворюючись на газ - водяну пару, яка виносить величезну кількість енергії в нижні шари атмосфери. При конденсації водяної пари та утворенні при цьому хмар або туману ця енергія звільняється у вигляді тепла. Близько половини сонячної енергії, що досягає земної поверхні, витрачається на випаровування води та надходить у нижні шари атмосфери. Таким чином, внаслідок парникового ефекту та випаровування води атмосфера прогрівається знизу. Цим частково пояснюється висока активність її циркуляції в порівнянні з циркуляцією Світового океану, який прогрівається тільки зверху і тому значно стабільніший за атмосферу.
також МЕТЕОРОЛОГІЯ І КЛІМАТОЛОГІЯ. Крім загального нагрівання атмосфери сонячним світлом, значне прогрівання деяких її шарів відбувається за рахунок ультрафіолетового та рентгенівського випромінювання Сонця. Будова. Порівняно з рідинами та твердими тілами, газоподібних речовин сила тяжіння між молекулами мінімальна. У міру збільшення відстані між молекулами гази можуть розширюватися безмежно, якщо їм ніщо не перешкоджає. Нижнім кордоном атмосфери є Землі. Строго кажучи, цей бар'єр непроникний, тому що газообмін відбувається між повітрям і водою і навіть між повітрям та гірськими породами, але в цьому випадку цими факторами можна знехтувати. Оскільки атмосфера є сферичною оболонкою, вона не має бічних кордонів, а є лише нижня межа і верхня (зовнішня) межа, відкрита з боку міжпланетного простору. Через зовнішній кордон відбувається витік деяких нейтральних газів, і навіть надходження речовини з навколишнього космічного простору. Більшість заряджених частинок, крім космічних променів, які мають високої енергією, або захоплюється магнітосферою, або відштовхується нею. На атмосферу діє сила земного тяжіння, яка утримує повітряну оболонку біля Землі. Атмосферні гази стискаються під впливом своєї ваги. Це стиснення максимально біля нижньої межі атмосфери, тому і густина повітря тут найбільша. На будь-якій висоті над земною поверхнею ступінь стиснення повітря залежить від маси стовпа повітря, що лежить вище, тому з висотою щільність повітря зменшується. Тиск, рівний масі вищого стовпа повітря, що припадає на одиницю площі, знаходиться в прямій залежності від щільності і, отже, також знижується з висотою. Якби атмосфера являла собою "ідеальний газ" з незалежним від висоти постійним складом, незмінною температурою і на неї діяла б постійна сила тяжіння, то тиск зменшувався б в 10 разів на кожні 20 км висоти. Реальна атмосфера трохи відрізняється від ідеального газу приблизно до висоти 100 км, а потім тиск з висотою зменшується повільніше, так як змінюється склад повітря. Невеликі зміни в описану модель вносить і зменшення сили тяжіння в міру віддалення від центру Землі, що становить поблизу земної поверхні прибл. 3% на кожних 100 км висоти. На відміну від атмосферного тиску, температура з висотою не знижується безперервно. Як показано на рис. 1, вона зменшується приблизно до висоти 10 км, а потім знову починає рости. Це відбувається при поглинанні ультрафіолетової сонячної радіації киснем. При цьому утворюється озон газ, молекули якого складаються з трьох атомів кисню (О3). Він теж поглинає ультрафіолетове випромінювання, тому цей шар атмосфери, званий озоносферою, нагрівається. Вище температура знову знижується, тому що там набагато менше молекул газу, і, відповідно, скорочується поглинання енергії. У ще вищих шарах температура знову підвищується внаслідок поглинання атмосферою найбільш короткохвильового ультрафіолетового та рентгенівського випромінювання Сонця. Під впливом цього випромінювання відбувається іонізація атмосфери, тобто. молекула газу втрачає електрон і набуває позитивного електричного заряду. Такі молекули стають позитивно зарядженими іонами. Завдяки наявності вільних електронів та іонів цей шар атмосфери набуває властивостей електропровідника. Вважають, що температура продовжує підвищуватися до висот, де розріджена атмосфера перетворюється на міжпланетний простір. На відстані кількох тисяч кілометрів від поверхні Землі, ймовірно, переважають температури від 5000 ° до 10 000 ° С. Хоча молекули та атоми мають дуже великі швидкості руху, а отже, і високу температуру, цей розріджений газ не є "гарячим" у звичному сенсі . Через мізерну кількість молекул на висотах їх сумарна теплова енергія дуже невелика. Таким чином, атмосфера складається з окремих шарів (тобто серії концентричних оболонок, або сфер), виділення яких залежить від того, яка властивість становить найбільший інтерес. На підставі посереднього розподілу температур метеорологи розробили схему будови ідеальної "середньої атмосфери" (див. рис. 1).

Тропосфера - нижній шар атмосфери, що тягнеться до першого термічного мінімуму (т.зв. тропопаузи). Верхня межа тропосфери залежить від географічної широти(У тропіках - 18-20 км, в помірних широтах - бл. 10 км) та пори року. Національна метеорологічна служба США провела зондування поблизу Південного полюса та виявила сезонні зміни висоти тропопаузи. У березні тропопауза знаходиться на висоті прибл. 7,5 км. З березня до серпня чи вересня відбувається неухильне охолодження тропосфери, і її кордон на короткий період у серпні чи вересні піднімається приблизно до висоти 11,5 км. Потім з вересня по грудень вона швидко знижується і досягає свого найнижчого становища - 7,5 км, де і залишається до березня, відчуваючи коливання в межах всього 0,5 км. Саме в тропосфері переважно формується погода, яка визначає умови існування людини. Більша частина атмосферної водяної пари зосереджена в тропосфері, і тому тут головним чином і формуються хмари, хоча деякі з них, що складаються з крижаних кристалів, зустрічаються й у високих шарах. Для тропосфери характерні турбулентність та потужні повітряні течії (вітри) та шторми. У верхній тропосфері існують сильні повітряні течії певного напрямку. Турбулентні вихори, подібні до невеликих вир, утворюються під впливом тертя і динамічної взаємодії між повітряними масами, що повільно і швидко рухаються. Оскільки в цих високих прошарках хмарності зазвичай немає, таку турбулентність називають "турбулентністю ясного неба".
Стратосфера.Вищележачий шар атмосфери часто помилково описують як шар з порівняно постійними температурами, де вітри дмуть більш менш стійко і де метеорологічні елементи мало змінюються. Верхні шари стратосфери нагріваються при поглинанні киснем та озоном сонячного ультрафіолетового випромінювання. Верхня межа стратосфери (стратопауза) проводиться там, де температура дещо підвищується, досягаючи проміжного максимуму, який нерідко можна порівняти з температурою приземного шару повітря. На основі спостережень, проведених за допомогою літаків та куль-зондів, пристосованих для польотів на постійній висоті, у стратосфері встановлені турбулентні обурення та сильні вітри, що дмуть у різних напрямках. Як і в тропосфері, відзначаються потужні повітряні вихори, які є особливо небезпечними для високошвидкісних літальних апаратів. Сильні вітри, які називають струминними течіями, дмуть у вузьких зонах уздовж кордонів помірних широт, звернених до полюсів. Однак ці зони можуть зміщуватися, зникати та з'являтися знову. Струменеві течії зазвичай проникають у тропопаузу і виявляються у верхніх шарах тропосфери, але їхня швидкість швидко зменшується зі зниженням висоти. Можливо, частина енергії, що надходить у стратосферу (переважно витрачається на утворення озону), впливає на процеси в тропосфері. Особливо активне перемішування пов'язані з атмосферними фронтами, де великі потоки стратосферного повітря було зареєстровано значно нижче тропопаузи, а тропосферне повітря залучалося нижні верстви стратосфери. Значних успіхів було досягнуто у вивченні вертикальної структури нижніх шарів атмосфери у зв'язку з удосконаленням техніки запуску на висоти 25-30 км радіозондів. Мезосфера, що знаходиться вище стратосфери, є оболонкою, в якій до висоти 80-85 км відбувається зниження температури до мінімальних показників для атмосфери в цілому. Рекордно низькі температури до -110 ° С були зареєстровані метеорологічними ракетами, запущеними з американо-канадської установки у Форт-Черчіллі (Канада). Верхня межа мезосфери (мезопауза) приблизно збігається з нижньою межею області активного поглинання рентгенівського та найбільш короткохвильового ультрафіолетового випромінювання Сонця, що супроводжується нагріванням та іонізацією газу. У полярних регіонах влітку у мезопаузі часто з'являються хмарні системи, які займають велику площу але мають незначний вертикальний розвиток. Такі хмари, що світяться ночами, часто дозволяють виявляти великомасштабні хвилеподібні рухи повітря в мезосфері. Склад цих хмар, джерела вологи та ядер конденсації, динаміка та зв'язок з метеорологічними факторами поки що недостатньо вивчені. Термосфера є шаром атмосфери, в якому безперервно підвищується температура. Його потужність може сягати 600 км. Тиск і, отже, густина газу з висотою постійно зменшуються. Поблизу земної поверхні 1 м3 повітря міститься бл. 2,5 ґ1025 молекул, на висоті бл. 100 км, у нижніх шарах термосфери, - приблизно 1019, на висоті 200 км, в іоносфері - 5*10 15 і, за розрахунками, на висоті бл. 850 км – приблизно 1012 молекул. У міжпланетному просторі концентрація молекул становить 108-109 на 1 м3. На висоті прибл. 100 км кількість молекул невелика і вони рідко стикаються між собою. Середня відстань, яку долає молекула, що хаотично рухається, до зіткнення з іншою такою ж молекулою, називається її середнім вільним пробігом. Шар, в якому ця величина настільки збільшується, що ймовірність міжмолекулярних або міжатомних зіткнень можна знехтувати, знаходиться на межі між термосферою і вищою оболонкою (екзосферою) і називається термопаузою. Термопауза віддалена від земної поверхні приблизно на 650 км. За певної температури швидкість руху молекули залежить від її маси: легші молекули рухаються швидше за важкі. У нижній атмосфері, де вільний пробіг дуже короткий, не спостерігається помітного поділу газів за їхньою молекулярною вагою, але воно виражене вище 100 км. Крім того, під впливом ультрафіолетового та рентгенівського випромінювання Сонця молекули кисню розпадаються на атоми, маса яких становить половину маси молекули. Тому в міру віддалення від поверхні Землі атомарний кисень набуває все більшого значення у складі атмосфери та на висоті бл. 200 км. стає її головним компонентом. Вище, приблизно з відривом 1200 км від Землі, переважають легкі гази - гелій і водень. З них складається зовнішня оболонка атмосфери. Такий поділ за вагою, званий дифузним розшаруванням, нагадує поділ сумішей за допомогою центрифуги. Екзосферою називається зовнішній шар атмосфери, що виділяється на основі змін температури та властивостей нейтрального газу. Молекули та атоми в екзосфері обертаються навколо Землі балістичними орбітами під впливом сили тяжіння. Деякі з цих орбіт є параболічні і схожі на траєкторії метальних снарядів. Молекули можуть обертатися навколо Землі і еліптичних орбіт, як супутники. Деякі молекули, в основному водню та гелію, мають розімкнені траєкторії та йдуть у космічний простір (рис. 2).



СОНЯЧНО-ЗЕМНІ ЗВ'ЯЗКИ ТА ЇХНИЙ ВПЛИВ НА АТМОСФЕРУ
Атмосферні припливи.Тяжіння Сонця і Місяця викликає в атмосфері припливи, подібні до земних і морських припливів. Але атмосферні припливи мають суттєву відмінність: атмосфера найсильніше реагує на тяжіння Сонця, тоді як земна кораі океан - на тяжіння Місяця. Це пояснюється тим, що атмосфера нагрівається Сонцем і на додаток до гравітаційного виникає потужний термальний приплив. В цілому механізми утворення атмосферних і морських припливів подібні, за винятком того, що для прогнозу реакції повітря на гравітаційні та термічні дії необхідно враховувати його стисливість та розподіл температури. Не до кінця зрозуміло, чому напівдобові (12-годинні) сонячні припливи в атмосфері переважають над добовими сонячними та напівдобовими місячними припливами, хоча рушійні сили двох останніх процесів набагато потужніші. Раніше вважалося, що в атмосфері виникає резонанс, що посилює саме коливання із 12-годинним періодом. Однак, спостереження, проведені за допомогою геофізичних ракет, свідчать про відсутність температурних причин такого резонансу. При вирішенні цієї проблеми, ймовірно, слід враховувати всі гідродинамічні та термічні особливості атмосфери. У земній поверхні поблизу екватора, де вплив приливних коливань максимальний, воно забезпечує зміну атмосферного тиску на 0,1%. Швидкість приливних вітрів становить прибл. 0,3 км/год. Завдяки складній термічній структурі атмосфери (особливо наявності мінімуму температури в мезопаузі) приливні повітряні течії посилюються, і, наприклад, на висоті 70 км їхня швидкість приблизно в 160 разів вища, ніж у земної поверхні, що має важливі геофізичні наслідки. Вважається, що в нижній частині іоносфери (шар Е) приливні коливання переміщують іонізований газ вертикально в магнітному полі Землі, отже, тут виникають електричні струми. Ці постійно виникаючі системи струмів лежить на поверхні Землі встановлюються за збуренням магнітного поля. Добові варіації магнітного поля досить добре узгоджуються з розрахунковими величинами, що свідчить на користь теорії приливних механізмів "атмосферного динамо". Електричні струми, що виникають у нижній частині іоносфери (шар Е), повинні кудись переміщатися, і отже ланцюг повинен замкнутися. Аналогія з динамо-машиною стає повною, якщо розглядати зустрічний рух як роботу двигуна. Передбачається, що зворотна циркуляція електричного струму здійснюється у вищому шарі іоносфери (F), і цим зустрічним потоком можуть пояснюватися деякі своєрідні риси цього шару. Нарешті, приливний ефект повинен породжувати горизонтальні потоки в шарі Е і, отже, у шарі F.
Іоносфера.Намагаючись пояснити механізм виникнення полярних сяйв, вчені 19 в. припустили, що у атмосфері існує зона з електрично зарядженими частинками. У 20 ст. експериментально були отримані переконливі докази існування на висотах від 85 до 400 км шару, що відбиває радіохвилі. Наразі відомо, що його електричні властивостіє результатом іонізації атмосферного газу. Тому зазвичай цей шар називають іоносферою. Вплив на радіохвилі відбувається головним чином через наявність в іоносфері вільних електронів, хоча механізм поширення радіохвиль пов'язаний із наявністю великих іонів. Останні також цікаві щодо хімічних властивостей атмосфери, оскільки вони активніше нейтральних атомів і молекул. Хімічні реакції, що протікають в іоносфері, відіграють важливу роль у її енергетичному та електричному балансі.
Нормальна іоносфера.Спостереження, проведені за допомогою геофізичних ракет та супутників, дали масу нової інформації, що свідчить, що іонізація атмосфери відбувається під впливом сонячної радіації широкого спектра. Основна її частина (понад 90%) зосереджена у видимій частині спектра. Ультрафіолетове випромінювання з меншою довжиною хвилі і більшою енергією, ніж у фіолетових світлових променів, випромінюється воднем внутрішньої частини атмосфери Сонця (хромосфери), а рентгенівське випромінювання, що має ще більшу енергію, - газами зовнішньої оболонки Сонця (корони. Нормальний (середній) стан іоносфери обумовлений постійним потужним випромінюванням. Регулярні зміни відбуваються у нормальній іоносфері під впливом добового обертання Землі та сезонних відмінностей кута падіння сонячних променів опівдні, але відбуваються також непередбачувані та різкі зміни стану іоносфери.
Обурення в іоносфері.Як відомо, на Сонці виникають потужні обурення, що циклічно повторюються, які досягають максимуму кожні 11 років. Спостереження за програмою Міжнародного геофізичного року (МГГ) збіглися з періодом найвищої сонячної активності протягом термін систематичних метеорологічних спостережень, тобто. з початку 18 ст. У періоди високої активності яскравість деяких областей на Сонці зростає у кілька разів, і вони посилають потужні імпульси ультрафіолетового та рентгенівського випромінювання. Такі явища називаються спалахами на Сонці. Вони тривають від кількох хвилин до одного-двох годин. Під час спалаху викидається сонячний газ (в основному протони та електрони), і елементарні частинки спрямовуються у космічний простір. Електромагнітне та корпускулярне випромінювання Сонця в моменти таких спалахів дуже впливає на атмосферу Землі. Початкова реакція відзначається через 8 хв після спалаху, коли інтенсивне ультрафіолетове та рентгенівське випромінювання досягає Землі. В результаті різко підвищується іонізація; рентгенівські промені проникають в атмосферу до нижньої межі іоносфери; кількість електронів у цих шарах зростає настільки, що радіосигнали майже повністю поглинаються ("гаснуть"). Додаткове поглинання радіації викликає нагрівання газу, що сприяє розвитку вітрів. Іонізований газ є електричним провідником, і коли він рухається в магнітному полі Землі, проявляється ефект динамо-машини та виникає електричний струм. Такі струми можуть викликати помітні обурення магнітного поля і виявлятися у вигляді магнітних бур. Ця початкова фаза займає лише короткий час, що відповідає тривалості сонячного спалаху. Під час потужних спалахів на Сонці у космічний простір спрямовується потік прискорених частинок. Коли він спрямований у бік Землі, настає друга фаза, що дуже впливає на стан атмосфери. Багато природних явищ, серед яких найбільш відомі полярні сяйва, свідчать, що значна кількість заряджених частинок досягає Землі (див. також ПОЛЯРНЕ СЯЙВО). Проте процеси відриву цих частинок від Сонця, їх траєкторії у міжпланетному просторі та механізми взаємодії з магнітним полем Землі та магнітосферою поки що недостатньо вивчені. Проблема ускладнилася після відкриття в 1958 Джеймсом Ван Алленом оболонок, що утримуються геомагнітним полем, що складаються із заряджених частинок. Ці частинки переміщаються з однієї півкулі в іншу, обертаючись спіралями навколо силових ліній магнітного поля. Поблизу Землі на висоті, яка залежить від форми силових ліній і від енергії частинок, розташовуються "точки відображення", в яких частинки змінюють напрямок руху на протилежний (рис. 3). Оскільки напруженість магнітного поля зменшується з віддаленням від Землі, орбіти, якими рухаються ці частинки, дещо спотворюються: електрони відхиляються на схід, а протони - на захід. Тому вони розподіляються у вигляді поясів навколо земної кулі.



Деякі наслідки нагрівання атмосфери Сонцем.Сонячна енергія впливає всю атмосферу. Вище вже згадувалися пояси, утворені зарядженими частинками в магнітному полі Землі і навколо неї. Ці пояси найближче підходять до земної поверхні у приполярних районах (див. рис. 3), де спостерігаються полярні сяйва. На малюнку 1 показано, що у районах прояви полярних сяйв Канаді температури термосфери значно вище, ніж у Південному Заході США. Ймовірно, захоплені частинки віддають частину своєї енергії в атмосферу, особливо при зіткненні з молекулами газу поблизу точок відображення і сходять зі своїх колишніх орбіт. Так відбувається нагрівання високих шарів атмосфери у зоні полярних сяйв. Ще одне важливе відкриття було зроблено щодо орбіт штучних супутників. Луїджі Яккіа, астроном зі Смітсонівської астрофізичної обсерваторії, вважає, що невеликі відхилення цих орбіт обумовлені змінами густини атмосфери при її нагріванні Сонцем. Він припустив існування на висоті понад 200 км в іоносфері максимуму концентрації електронів, який не відповідає сонячному полудню, а під впливом сили тертя запізнюється стосовно нього приблизно дві години. Саме тоді значення щільності атмосфери, звичайні для висоти 600 км, спостерігаються лише на рівні ок. 950 км. Крім того, максимум концентрації електронів зазнає нерегулярних коливань внаслідок короткочасних спалахів ультрафіолетового та рентгенівського випромінювання Сонця. Л.Якіа виявив також короткочасні коливання щільності повітря, що відповідають спалахам на Сонці та збуренням магнітного поля. Ці явища пояснюються вторгненням частинок сонячного походження в атмосферу Землі та нагріванням тих її верств, де проходять орбіти супутників.
АТМОСФЕРНА ЕЛЕКТРИКА
У приземному шарі атмосфери невелика частина молекул піддається іонізації під впливом космічних променів, випромінювання радіоактивних гірських порід та продуктів розпаду радію (в основному радону) у самому повітрі. У процесі іонізації атом втрачає електрон і набуває позитивного заряду. Вільний електрон швидко з'єднується з іншим атомом утворюючи негативно заряджений іон. Такі парні позитивні та негативні іони мають молекулярні розміри. Молекули у атмосфері прагнуть групуватися навколо цих іонів. Декілька молекул, що поєдналися з іоном, утворюють комплекс, званий зазвичай "легким іоном". В атмосфері є також комплекси молекул, відомі в метеорології під назвою ядер конденсації, навколо яких при насиченні повітря вологою починається процес конденсації. Ці ядра є частинками солі і пилу, а також забруднюючих речовин, що надходять у повітря від промислових та інших джерел. Легкі іони часто приєднуються до таких ядр, утворюючи "важкі іони". Під впливом електричного поля легкі та важкі іони переміщаються з одних областей атмосфери до інших, переносячи електричні заряди. Хоча зазвичай атмосфера не вважається електропровідним середовищем, вона все ж має невелику провідність. Тому залишене в повітрі заряджене тіло повільно втрачає свій заряд. Провідність атмосфери зростає з висотою через збільшення інтенсивності космічного випромінювання, зменшення втрат іонів в умовах нижчого тиску (і, отже, при більшому середньому вільному пробігу), а також через меншу кількість важких ядер. Провідність атмосфери досягає максимальної величини на висоті прибл. 50 км, т.зв. "рівні компенсації". Відомо, що між поверхнею Землі та "рівнем компенсації" постійно існує різницю потенціалів у кілька сотень кіловольт, тобто. Постійне електричне поле. З'ясувалося, що різниця потенціалів між деякою точкою, яка перебуває у повітрі на висоті кількох метрів, і поверхнею Землі дуже велика – понад 100 В. Атмосфера має позитивний заряд, а земна поверхня заряджена негативно. Оскільки електричне поле - область, у кожній точці якої є деяке значення потенціалу, можна говорити про градієнт потенціалу. У ясну погоду в межах нижніх кількох метрів напруженість електричного поля атмосфери майже стала. Через відмінності електропровідності повітря в приземному шарі градієнт потенціалу схильний до добових коливань, хід яких істотно змінюється від місця до місця. За відсутності локальних джерел забруднення повітря - над океанами, високо у горах чи полярних районах - добовий хід градієнта потенціалу у ясну погоду однаковий. Величина градієнта залежить від всесвітнього, або середнього грінвічського часу (UT) і досягає максимуму в 19 год. Е. Еплтон припустив, що цей максимум електропровідності, ймовірно, збігається з найбільшою грозовою активністю в планетарному масштабі. Розряди блискавок під час гроз переносять негативний заряд до поверхні Землі, оскільки основи найбільш активних купо-дощових грозових хмар мають значний негативний заряд. Верхні частини грозових хмар мають позитивний заряд, який, за розрахунками Хольцера і Саксона, під час гроз стікає з їхніх вершин. Без постійного поповнення заряд земної поверхні було б нейтралізовано з допомогою провідності атмосфери. Припущення про те, що різниця потенціалів між земною поверхнею та "рівнем компенсації" підтримується завдяки грозам, підкріплюється статистичними даними. Наприклад, максимальна кількість гроз відзначається у долині річки. Амазонки. Найчастіше грози бувають там наприкінці дня, тобто. бл. 19 год середнього грінвічського часу, коли градієнт потенціалу максимальний у будь-якій точці земної кулі. Більше того, сезонні варіації форми кривих добового ходу градієнта потенціалу також перебувають у повній відповідності до даних про глобальний розподіл гроз. Деякі дослідники стверджують, що джерело електричного поля Землі, можливо, має зовнішнє походження, оскільки електричні поля, як вважають, існують в іоносфері та магнітосфері. Цією обставиною, ймовірно, пояснюється виникнення дуже вузьких видовжених форм полярних сяйв, схожих на куліси та арки
(Див. також ПОЛЯРНЕ Сяйво). Завдяки наявності градієнта потенціалу та провідності атмосфери між "рівнем компенсації" та поверхнею Землі починають рухатися заряджені частинки: позитивно заряджені іони - у напрямку до земної поверхні, а негативно заряджені - вгору від неї. Сила цього струму становить прибл. 1800 А. Хоча ця величина здається великою, необхідно пам'ятати, що вона розподіляється на всій поверхні Землі. Сила струму в стовпі повітря з площею основи 1 м2 становить лише 4*10 -12 А. З іншого боку, сила струму при розряді блискавки може досягати кількох ампер, хоча, звичайно, такий розряд має малу тривалість - від часток секунди до цілої секунди або трохи більше за повторних розрядів. Блискавка представляє великий інтерес як як своєрідне явище природи. Вона дає можливість спостерігати електричний розряд у газовому середовищі при напрузі кілька сотень мільйонів вольт і відстані між електродами кілька кілометрів. У 1750 Б. Франклін запропонував Лондонському королівському суспільству поставити досвід із залізною штангою, укріпленою на ізолюючій основі та встановленою на високій вежі. Він очікував, що при наближенні грозової хмари до вежі на верхньому кінці спочатку нейтральної штанги зосередиться заряд протилежного знака, а на нижньому - заряд того ж знака, що біля хмари. Якщо напруженість електричного поля при розряді блискавки зросте досить сильно, заряд з верхнього кінця штанги частково стікатиме в повітря, а штанга придбає заряд того ж знака, що і хмара. Запропонований Франкліном експеримент не був здійснений в Англії, однак його поставив у 1752 році в Марлі під Парижем французький фізик Жан д'Аламбер. його помічник повідомив, що, коли грозова хмара знаходилася над штангою, при піднесенні до неї заземленого дроту виникали іскри.Сам Франклін, не знаючи про успішний досвід, реалізований у Франції, у червні того ж року провів свій знаменитий експеримент з повітряним змієм і спостерігав електричні На наступний рік, вивчаючи заряди, зібрані зі штанги, Франклін встановив, що підстави грозових хмар зазвичай заряджені негативно.Детальніші дослідження блискавок стали можливі в кінці 19 ст завдяки вдосконаленню методів фотографії, особливо після винаходу апарату з лінзами, що обертаються, що дозволило фіксувати процеси, що швидко розвиваються. Такий фотоапарат широко використовувався щодо іскрових розрядів. Було встановлено, що існує кілька типів блискавок, причому найбільш поширені лінійні, плоскі (внутрішньохмарні) та кульові (повітряні розряди). Лінійні блискавки є іскровий розряд між хмарою і земною поверхнею, що йде по каналу з спрямованими вниз відгалуженнями. Плоскі блискавки виникають усередині грозової хмари і виглядають як спалахи розсіяного світла. Повітряні розряди кульових блискавок, що починаються від грозової хмари, часто спрямовані горизонтально і досягають земної поверхні.



Розряд блискавки зазвичай складається з трьох або більше повторних розрядів - імпульсів, що йдуть по тому самому шляху. Інтервали між послідовними імпульсами дуже короткі, від 1/100 до 1/10 с (цим обумовлено мерехтіння блискавки). Загалом спалах триває близько секунди чи менше. Типовий процес розвитку блискавки можна описати в такий спосіб. Спочатку зверху до земної поверхні спрямовується слабо світиться розряд-лідер. Коли він її досягне, зворотний або головний, що яскраво світиться, розряд проходить від землі вгору по каналу, прокладеному лідером. Розряд-лідер, як правило, рухається зигзагоподібно. Швидкість його поширення коливається від ста до кількох сотень кілометрів на секунду. На своєму шляху він іонізує молекули повітря, створюючи канал з підвищеною провідністю, яким зворотний розряд рухається вгору зі швидкістю приблизно в сто разів більшою, ніж у розряду-лідера. Розмір каналу визначити важко, проте діаметр розряду-лідера оцінюється в 1-10 м, а зворотного розряду - кілька сантиметрів. Розряди блискавки створюють радіоперешкоди, випромінюючи радіохвилі в широкому діапазоні - від 30 кГц до наднизьких частот. Найбільше випромінювання радіохвиль знаходиться, ймовірно, у діапазоні від 5 до 10 кГц. Такі низькочастотні радіоперешкоди "зосереджені" у просторі між нижньою межею іоносфери та земною поверхнею і здатні поширюватися на відстані тисячі кілометрів від джерела.
ЗМІНИ В АТМОСФЕРІ
Вплив метеорів та метеоритів.Хоча іноді метеорні дощі справляють глибоке враження своїми світловими ефектами, окремі метеори видно досить рідко. Набагато чисельніше невидимі метеори, надто малі, щоб бути помітними в момент їх поглинання атмосферою. Деякі з найдрібніших метеорів, мабуть, зовсім не нагріваються, а лише захоплюються атмосферою. Ці дрібні частинки з розмірами від кількох міліметрів до десятитисячних часток міліметра називаються мікрометеоритами. Кількість метеорної речовини, яка щодобово надходить в атмосферу становить від 100 до 10 000 т, причому більша частина цієї речовини припадає на мікрометеорити. Оскільки метеорна речовина частково згорає в атмосфері, її газовий склад поповнюється різними слідами. хімічних елементів. Наприклад, кам'яні метеори привносять до атмосфери літій. Згоряння металевих метеорів призводить до утворення дрібних сферичних залізних, залізонікелевих та інших крапельок, які проходять крізь атмосферу та осідають на земній поверхні. Їх можна виявити в Гренландії та Антарктиді, де майже без змін роками зберігаються льодовикові покриви. Океанологи знаходять їх у донних океанічних відкладах. Більшість метеорних частинок, що надійшли в атмосферу, осаджується приблизно протягом 30 діб. Деякі вчені вважають, що цей космічний пил відіграє важливу роль у формуванні таких атмосферних явищ, як дощ, оскільки є ядрами конденсації водяної пари. Тому припускають, що випадання опадів статистично пов'язане із великими метеорними дощами. Однак деякі фахівці вважають, що оскільки загальне надходження метеорної речовини в багато десятків разів перевищує її надходження навіть з найбільшим метеорним дощем, зміною в загальній кількості цієї речовини, що відбувається в результаті одного такого дощу, можна знехтувати. Однак, безсумнівно, найбільш великі мікрометеорити і, звичайно, видимі метеорити залишають довгі сліди іонізації у високих шарах атмосфери, головним чином в іоносфері. Такі сліди можна використовувати для далекого радіозв'язку, оскільки вони відображають високочастотні радіохвилі. Енергія метеорів, що надходять в атмосферу, витрачається головним чином, а може бути і повністю, на її нагрівання. Це одна з другорядних складових теплового балансуатмосфери.
Вуглекислий газ промислового походження.У кам'яновугільному періоді Землі була поширена деревна рослинність. Більшість діоксиду вуглецю, поглиненого тоді рослинами, накопичилася в покладах вугілля й у нафтоносних відкладеннях. Величезні запаси цих корисних копалин людина навчилася використовувати як джерело енергії і зараз швидкими темпами повертає вуглекислий газ у кругообіг речовин. У викопному стані знаходиться, мабуть, бл. 4 * 10 13 т вуглецю. За останнє століття людство спалило стільки копалин, що приблизно 4*10 11 т вуглецю знову надійшло в атмосферу. В даний час в атмосфері є прибл. 2*10 12 т вуглецю, а найближчі сто років за рахунок спалювання викопного палива ця цифра, можливо, подвоїться. Однак не весь вуглець залишиться в атмосфері: частина його розчиниться у водах океану, частина буде поглинена рослинами, а частина – пов'язана у процесі вивітрювання гірських порід. Поки не можна передбачити, скільки вуглекислого газу утримуватиметься в атмосфері або який саме вплив він вплине на клімат земної кулі. Тим не менш, вважається, що будь-яке збільшення його змісту викличе потепління, хоча зовсім не обов'язково, що будь-яке потепління суттєво вплине на клімат. Концентрація вуглекислого газу атмосфері, за результатами вимірів, помітно збільшується, хоч і нешвидкими темпами. Кліматичні дані по Шпіцбергену та станції Літтл-Америка на шельфовому льодовику Росса в Антарктиді свідчать про підвищення середніх річних температур приблизно за 50-річний період відповідно на 5° та 2,5°С.
Вплив космічного випромінювання.При взаємодії космічних променів, що володіють високою енергією, з окремими складовими атмосфери утворюються радіоактивні ізотопи. Серед них виділяється ізотоп вуглецю 14С, що накопичується в рослинних та тваринних тканинах. Шляхом вимірювання радіоактивності органічних речовин, які давно не обмінюються вуглецем з довкіллям, можна визначити їхній вік. Радіовуглецевий метод зарекомендував себе як найбільш надійний спосіб датування викопних організмів та предметів матеріальної культури, вік яких не перевищує 50 тис. років. Для датування матеріалів, які мають вік у сотні тисяч років, можна буде використовувати інші радіоактивні ізотопи з великими періодами напіврозпаду, якщо буде вирішене принципове завдання вимірювання вкрай низьких рівнів радіоактивності
(Див. також РАДІОВУГЛЕРОДНЕ ДАТУВАННЯ).
ПОХОДЖЕННЯ АТМОСФЕРИ ЗЕМЛІ
Історію утворення атмосфери поки що не вдалося відновити абсолютно достовірно. Проте виявлено деякі можливі зміни її складу. Становлення атмосфери почалося відразу після формування Землі. Є досить вагомі підстави вважати, що в процесі еволюції Праземлі та набуття нею близьких до сучасних розмірів і маси вона майже повністю втратила свою первісну атмосферу. Вважається, що на ранньому етапі Земля перебувала в розплавленому стані та прибл. 4,5 млрд. років тому оформилася в тверде тіло. Цей рубіж приймається початок геологічного літочислення. Відтоді відбувалася й повільна еволюція атмосфери. Деякі геологічні процеси, як, наприклад, вилив лави при виверженнях вулканів, супроводжувалися викидом газів з надр Землі. До їх складу, ймовірно, входили азот, аміак, метан, водяна пара, оксид та діоксид вуглецю. Під впливом сонячної ультрафіолетової радіації водяна пара розкладалася на водень і кисень, але кисень, що звільнився, вступав в реакцію з оксидом вуглецю з утворенням вуглекислого газу. Аміак розкладався на азот та водень. Водень в процесі дифузії піднімався вгору і залишав атмосферу, а важчий азот не міг випаруватися і поступово накопичувався, стаючи основним її компонентом, хоча деяка його частина зв'язувалася в ході хімічних реакцій. Під впливом ультрафіолетових променів та електричних розрядів суміш газів, що ймовірно були присутні в початковій атмосфері Землі, вступала в хімічні реакції, внаслідок яких відбувалося утворення органічних речовин, зокрема амінокислот. Отже, життя могло зародитися в атмосфері, принципово відмінній від сучасної. З появою примітивних рослин почався процес фотосинтезу (див. також Фотосинтез), що супроводжувався виділенням вільного кисню. Цей газ, особливо після дифузії у верхні шари атмосфери, став захищати її нижні шари та поверхню Землі від небезпечних для життя ультрафіолетового та рентгенівського випромінювань. За оцінками, наявність всього 0,00004 сучасного обсягу кисню могло призвести до формування шару з удвічі меншою, ніж зараз, концентрацією озону, що забезпечувало істотний захист від ультрафіолетових променів. Ймовірно також, що у первинній атмосфері містилося багато вуглекислого газу. Він витрачався в ході фотосинтезу, і його концентрація мала зменшуватися в міру еволюції світу рослин, а також через поглинання в ході деяких геологічних процесів. Оскільки парниковий ефект пов'язаний із присутністю вуглекислого газу в атмосфері, деякі вчені вважають, що коливання його концентрації є однією з важливих причин таких великомасштабних кліматичних змін в історії Землі, як льодовикові періоди. Присутній у сучасній атмосфері гелій, ймовірно, здебільшого є продуктом радіоактивного розпаду урану, торію та радію. Ці радіоактивні елементи випускають альфа-частинки, які є ядра атомів гелію. Оскільки в ході радіоактивного розпаду електричний заряд не утворюється і не зникає, на кожну альфа-частку припадає два електрони. Через війну вона з'єднується із нею, утворюючи нейтральні атоми гелію. Радіоактивні елементимістяться в мінералах, розсіяних у товщі гірських порід, тому значна частина гелію, що утворився в результаті радіоактивного розпаду, зберігається в них, дуже повільно випаровуючись в атмосферу. Декілька кількість гелію за рахунок дифузії піднімається вгору в екзосферу, але завдяки постійному припливу від земної поверхні обсяг цього газу в атмосфері незмінний. На підставі спектрального аналізу світла зірок та вивчення метеоритів можна оцінити відносний вміст різних хімічних елементів у Всесвіті. Концентрація неону в космосі приблизно в десять мільярдів разів вища, ніж на Землі, криптону – у десять мільйонів разів, а ксенону – у мільйон разів. Звідси випливає, що концентрація цих інертних газів, які спочатку були присутні в земній атмосфері і не поповнювалися в процесі хімічних реакцій, сильно знизилася, ймовірно, ще на етапі втрати Землею своєї первинної атмосфери. Виняток становить інертний газ аргон, оскільки у формі ізотопу 40Ar він і зараз утворюється у процесі радіоактивного розпаду ізотопу калію.
ОПТИЧНІ ЯВИЩА
Різноманітність оптичних явищ у атмосфері обумовлено різними причинами. До найпоширеніших феноменів відносяться блискавка (див. вище) і мальовничі північне і південне полярні сяйва (див. також ПОЛЯРНЕ СЯЙВО). Крім того, особливо цікаві веселка, гал, паргелій (хибне сонце) і дуги, корона, німби та привиди Броккена, міражі, вогні святого Ельма, хмари, що світяться, зелені та сутінкові промені. Веселка – найкрасивіше атмосферне явище. Зазвичай це величезна арка, що складається з різнокольорових смуг, що спостерігається, коли Сонце висвітлює лише частину небосхилу, а повітря насичене крапельками води, наприклад під час дощу. Різнобарвні дуги розташовуються в послідовності спектру (червона, помаранчева, жовта, зелена, блакитна, синя, фіолетова), проте кольори майже ніколи не бувають чистими, оскільки смуги взаємно перекриваються. Як правило, Фізичні характеристикивеселка суттєво різняться, тому і на вигляд вони дуже різноманітні. Їхньою загальною рисою є те, що центр дуги завжди розташовується на прямій, проведеній від Сонця до спостерігача. Головна веселка є дугою, що складається з найбільш яскравих кольорів - червоного на зовнішній стороні і фіолетового - на внутрішній. Іноді видно лише одну дугу, але часто із зовнішнього боку основний веселки з'являється побічна. Вона має не такі яскраві кольори, як перша, а червона та фіолетова смуги в ній змінюються місцями: червона розташовується з внутрішньої сторони. Утворення головної веселки пояснюється подвійним заломленням (див. також ОПТИКА) та одноразовим внутрішнім відображенням променів сонячного світла (див. рис. 5). Проникаючи всередину краплі води (А), промінь світла заломлюється і розкладається, як у проходженні крізь призму. Потім він досягає протилежної поверхні краплі (В), відбивається від неї і виходить із краплі назовні (С). При цьому промінь світла, перш ніж досягти спостерігача, переломлюється вдруге. Вихідний білий промінь розкладається на промені різних кольорів із кутом розбіжності 2°. При утворенні побічної веселки відбувається подвійне заломлення та подвійне відбиття сонячних променів (див. рис. 6). У цьому випадку світло заломлюється, проникаючи всередину краплі через її нижню частину (А), і відбивається від внутрішньої поверхні краплі спочатку в точці, потім в точці С. У точці D світло заломлюється, виходячи з краплі в бік спостерігача.





На сході та заході Сонця спостерігач бачить веселку у вигляді дуги, рівної половині кола, оскільки вісь веселки паралельна горизонту. Якщо Сонце розташовується вище над горизонтом, дуга веселки менше половини кола. Коли Сонце піднімається вище 42 ° над горизонтом, веселка зникає. Скрізь, окрім високих широт, веселка не може з'явитися опівдні, коли Сонце стоїть надто високо. Цікаво оцінити відстань до веселки. Хоча здається, що різнокольорова дуга розташована в одній площині, це ілюзія. Насправді веселка має величезну глибину, і її можна уявити у вигляді поверхні пустотілого конуса, у вершині якого знаходиться спостерігач. Ось конуса з'єднує Сонце, спостерігача та центр веселки. Спостерігач дивиться як би вздовж поверхні цього конуса. Двоє людей ніколи не можуть побачити абсолютно однакову веселку. Звичайно, можна спостерігати в цілому один і той же ефект, але дві веселки займають різне положення та утворені різними крапельками води. Коли дощ або водяний пил утворюють веселку, повний оптичний ефект досягається за рахунок сумарного впливу всіх крапельок води, що перетинають поверхню конуса веселки зі спостерігачем у вершині. Роль кожної краплі швидкоплинна. Поверхня конуса веселки складається з кількох шарів. Швидко перетинаючи їх і проходячи при цьому через серію критичних точок, кожна крапля миттєво розкладає сонячний промінь на весь спектр у певній послідовності - від червоного до фіолетового кольору. Безліч крапель так само перетинає поверхню конуса, отже веселка представляється спостерігачеві безперервної як вздовж, і упоперек її дуги. Гало - білі або райдужні світлові дуги та кола навколо диска Сонця або Місяця. Вони виникають внаслідок заломлення або відображення світла кристалами льоду або снігу, що знаходяться в атмосфері. Кристали, що формують гало, розташовуються на поверхні уявного конуса з віссю, спрямованої від спостерігача (з вершини конуса) до Сонця. За деяких умов атмосфера буває насичена дрібними кристалами, багато грані яких утворюють прямий кут з площиною, що проходить через Сонце, спостерігача та ці кристали. Такі грані відбивають промені світла, що надходять, з відхиленням на 22°, утворюючи червоне з внутрішньої сторони гало, але воно може складатися і з усіх кольорів спектру. Рідше зустрічається гало з кутовим радіусом 46°, розташоване концентрично навколо 22-градусного гало. Його внутрішня сторона теж має червоний відтінок. Причиною цього також є заломлення світла, що відбувається в цьому випадку на гранях кристалів, що утворюють прямі кути. Ширина кільця такого гало перевищує 2,5 °. Як 46-градусні, так і 22-градусні гало, як правило, мають найбільшу яскравість у верхній та нижній частинах кільця. 90-градусне гало, що зрідка зустрічається, являє собою слабо світиться, майже безбарвне кільце, що має загальний центр з двома іншими гало. Якщо воно пофарбоване, має червоний колір на зовнішній стороні кільця. Механізм виникнення такого типу гало остаточно не з'ясований (рис. 7).



Паргелії та дуги. Паргельське коло (або коло хибних сонців) - біле кільце з центром у точці зеніту, що проходить через Сонце паралельно горизонту. Причиною його утворення є відображення сонячного світла від граней поверхонь кристалів льоду. Якщо кристали досить рівномірно розподілені повітря, стає видимим повне коло. Паргелії, або помилкові сонця, - це плями, що яскраво світяться, нагадують Сонце, які утворюються в точках перетину паргелічного кола з гало, що мають кутові радіуси 22°, 46° і 90°. Найчастіше утворюється і найяскравіший паргелій формується на перетині з 22-градусним гало, зазвичай пофарбований майже у всі кольори веселки. Помилкові сонця на перетинах з 46- та 90-градусними гало спостерігаються набагато рідше. Паргелії, що виникають на перехрестях з 90-градусними гало, називаються парантеліями, або хибними протисонцями. Іноді видно також антелій (протисонце) - яскрава пляма, розташована на кільці паргелію точно навпроти Сонця. Передбачається, що причиною виникнення цього явища є подвійне внутрішнє віддзеркалення сонячного світла. Відбитий промінь проходить тим самим шляхом, як і падаючий промінь, але у напрямі. Околозенітна дуга, іноді неправильно звана верхньою дотичною дугою 46-градусного гало, - це дуга в 90° або менше з центром у точці зеніту, розташована вище Сонця приблизно на 46°. Вона буває видна рідко і лише протягом декількох хвилин, має яскраві кольори, причому червоний колір приурочений до зовнішнього боку дуги. Околозенітна дуга примітна своїм забарвленням, яскравістю і чіткими обрисами. Ще один цікавий та дуже рідкісний оптичний ефект типу гало – дуги Лівиця. Вони виникають як продовження паргеліїв на перетині з 22-градусним гало, проходять із зовнішнього боку гало і злегка увігнуті у бік Сонця. Стовпи білуватого світла, як і різноманітні хрести, іноді видно на світанку або на заході сонця, особливо в полярних регіонах, і можуть супроводжувати як Сонцю, так і Місяцю. Часом спостерігаються місячні гало та інші ефекти, подібні до описаних вище, причому найбільш звичайне місячне гало (кільце навколо Місяця) має кутовий радіус 22°. Подібно до хибних сонців, можуть виникати помилкові місяці. Корони, або вінці, - невеликі концентричні кольорові кільця навколо Сонця, Місяця чи інших яскравих об'єктів, які спостерігаються іноді, коли джерело світла перебуває за напівпрозорими хмарами. Радіус корони менший за радіус гало і становить бл. 1-5°, найближчим до Сонця виявляється блакитне чи фіолетове кільце. Корона виникає при розсіюванні світла дрібними водяними крапельками води, що утворюють хмару. Іноді корона виглядає як пляма (або ореол), що світиться, навколишнє Сонце (або Місяць), яке завершується червонуватим кільцем. У інших випадках поза ореолу видно щонайменше двох концентричних кілець більшого діаметра, дуже слабко пофарбованих. Це супроводжується райдужними хмарами. Іноді краї дуже високо розташованих хмар пофарбовані яскравими кольорами.
Глорії (німби).У особливих умовах з'являються незвичайні атмосферні явища. Якщо Сонце знаходиться за спиною спостерігача, а його тінь проектується на хмари або завісу туману, при певному стані атмосфери навколо тіні голови людини можна побачити кольорове коло, що світиться - німб. Зазвичай такий німб утворюється через відбиття світла крапельками роси на трав'яному газоні. Глорії також досить часто можна виявити навколо тіні, яку відкидає літак на хмари нижче.
Привиди Броккена.У деяких районах земної кулі, коли тінь спостерігача при сході або заході Сонця ззаду нього падає на хмари, розташовані на невеликій відстані, виявляється вражаючий ефект: тінь набуває колосальних розмірів. Це відбувається через відбиття та заломлення світла найдрібнішими крапельками води в тумані. Описане явище зветься "привид Броккена" на ім'я вершини в горах Гарц у Німеччині.
Міражі- оптичний ефект, зумовлений заломленням світла при проходженні через шари повітря різної щільності і виявляється у виникненні уявного зображення. Видалені об'єкти при цьому можуть виявитися піднятими або опущеними щодо їх дійсного положення, а також можуть бути спотворені та набути неправильних, фантастичних форм. Міражі часто спостерігаються за умов спекотного клімату, наприклад над піщаними рівнинами. Звичайні нижні міражі, коли віддалена, майже рівна поверхня пустелі набуває вигляду відкритої води, особливо якщо дивитися з невеликого піднесення або просто перебувати вище шару нагрітого повітря. Подібна ілюзія зазвичай виникає на нагрітій асфальтованій дорозі, яка далеко попереду виглядає як водяна поверхня. Насправді ця поверхня є відбитком піднебіння. Нижче за рівень очей у цій "воді" можуть з'явитися об'єкти, зазвичай перевернуті. Над нагрітою поверхнею суші формується "повітряний листковий пиріг", причому найближчий до землі шар - нагрітий і настільки розріджений, що світлові хвилі, проходячи через нього, спотворюються, тому що швидкість їх поширення змінюється в залежності від щільності середовища. Верхні міражі менш поширені і більш мальовничі проти нижніми. Видалені об'єкти (часто перебувають за морським горизонтом) вимальовуються на небі в перевернутому положенні, інколи ж вище з'являється ще й пряме зображення тієї самої об'єкта. Це типово для холодних регіонів, особливо при значній температурній інверсії, коли над холоднішим шаром знаходиться тепліший шар повітря. Цей оптичний ефект проявляється внаслідок складних закономірностей поширення фронту світлових хвиль у шарах повітря з неоднорідною щільністю. Іноді виникають дуже незвичайні міражі, особливо у полярних регіонах. Коли міражі з'являються на суші, дерева та інші компоненти ландшафту перевернуті. У всіх випадках у верхніх міражах об'єкти видно чіткіше, ніж у нижніх. Коли кордоном двох повітряних мас є вертикальна площина, часом спостерігаються бічні міражі.
Вогні святого Ельма.Деякі оптичні явища в атмосфері (наприклад, світіння та найпоширеніше метеорологічне явище – блискавка) мають електричну природу. Набагато рідше зустрічаються вогні святого Ельма - блідо-блакитні або фіолетові кисті, що світяться, довжиною від 30 см до 1 м і більше, зазвичай на верхівках щог або кінцях рей, що знаходяться в морі суден. Іноді здається, що такелаж судна покритий фосфором і світиться. Вогні святого Ельма часом виникають на гірських вершинах, а також на шпилях та гострих кутах високих будівель. Це явище є кистьові електричні розряди на кінцях електропровідників, коли в атмосфері навколо них сильно підвищується напруженість електричного поля. Блукаючі вогники - слабке світіння блакитного або зеленуватого кольору, яке іноді спостерігається на болотах, цвинтарях та в склепах. Вони часто виглядають як піднесене приблизно на 30 см над землею, що спокійно горить, не дає тепла, полум'я свічки, що на мить зависає над об'єктом. Вогник здається абсолютно невловимим і при наближенні спостерігача переміщується в інше місце. Причиною цього явища є розкладання органічних залишків і самозаймання болотного газу метану (СН4) або фосфіну (РН3). Блукаючі вогники мають різну форму, іноді навіть кулясту. Зелений промінь - спалах сонячного світла смарагдово-зеленого кольору, коли останній промінь Сонця ховається за горизонтом. Червона складова сонячного світла зникає першою, решта - по порядку слідом за нею, і останньою залишається смарагдово-зелена. Це явище виникає лише тоді, коли над горизонтом залишається тільки самий краєчок сонячного диска, а інакше відбувається змішання кольорів. Сутінкові промені - пучки сонячного світла, що розходяться, які стають видимими завдяки освітленню ними пилу у високих шарах атмосфери. Тіні від хмар утворюють темні смуги, а між ними поширюються промені. Цей ефект спостерігається, коли Сонце знаходиться низько над горизонтом перед світанком або після заходу сонця.

Атмосфера – газова оболонка нашої планети, яка обертається разом із Землею. Газ, що у атмосфері, називають повітрям. Атмосфера стикається з гідросферою та частково покриває літосферу. А ось верхні межі визначити важко. Умовно прийнято вважати, що атмосфера простягається нагору приблизно на три тисячі кілометрів. Там вона плавно перетікає у безповітряний простір.

Хімічний склад атмосфери Землі

Формування хімічного складу атмосфери розпочалося близько чотирьох мільярдів років тому. Спочатку атмосфера складалася лише з легких газів – гелію та водню. На думку вчених, вихідними передумовами створення газової оболонки навколо Землі стали виверження вулканів, які разом з лавою викидали величезну кількість газів. Надалі розпочався газообмін з водними просторами, з живими організмами, з продуктами їхньої діяльності. Склад повітря поступово змінювався і в сучасному виглядізафіксувався кілька мільйонів років тому.

Головні складові атмосфери це азот (близько 79%) і кисень (20%). Відсоток, що залишився (1%) припадає на такі гази: аргон, неон, гелій, метан, вуглекислий газ, водень, криптон, ксенон, озон, аміак, двоокису сірки і азоту, закис азоту і окис вуглецю, що входять в цей один відсоток.

Крім того, в повітрі міститься водяна пара і тверді частинки (пилок рослин, пил, кристали солі, домішки аерозолів).

Останнім часом вчені відзначають не якісну, а кількісну зміну деяких інгредієнтів повітря. І причина тому – людина та її діяльність. Лише за останні 100 років вміст вуглекислого газу значно зріс! Це загрожує багатьма проблемами, найбільш глобальна з яких – зміна клімату.

Формування погоди та клімату

Атмосфера грає найважливішу роль формуванні клімату та погоди Землі. Дуже багато залежить від кількості сонячних променів, від характеру поверхні, що підстилає, і атмосферної циркуляції.

Розглянемо чинники з порядку.

1. Атмосфера пропускає тепло сонячних променів та поглинає шкідливу радіацію. Про те, що промені Сонця падають різні ділянки Землі під різними кутами, знали ще древні греки. Саме слово "клімат" у перекладі з давньогрецької означає "нахил". Так, на екваторі сонячні промені падають практично прямовисно, тому тут дуже спекотно. Чим ближче до полюсів, тим більший кут нахилу. І температура знижується.

2. Через нерівномірне нагрівання Землі в атмосфері формуються повітряні течії. Вони класифікуються за своїми розмірами. Найменші (десятки та сотні метрів) – це місцеві вітри. Далі йдуть мусони та пасати, циклони та антициклони, планетарні фронтальні зони.

Усі ці повітряні маси постійно переміщуються. Деякі їх досить статичні. Наприклад, пасати, які дмуть від субтропіків до екватора. Рух інших багато в чому залежить від атмосферного тиску.

3. Атмосферний тиск – ще один фактор, що впливає на формування клімату. Це тиск повітря на поверхню ґрунту. Як відомо, повітряні маси переміщаються з області з підвищеним атмосферним тиском у бік області, де тиск нижче.

Усього виділено 7 зон. Екватор – зона низького тиску. Далі, по обидва боки від екватора до тридцятих широт - область високого тиску. Від 30 ° до 60 ° - знову низький тиск. А від 60 ° до полюсів – зона високого тиску. Між цими зонами циркулюють повітряні маси. Ті, що йдуть із моря на сушу, несуть дощі та негоду, а ті, що дмуть із континентів – ясну та суху погоду. У місцях, де повітряні течії стикаються, утворюються зони атмосферного фронту, які характеризуються опадами та ненависною, вітряною погодою.

Вчені довели, що від атмосферного тиску залежить навіть здоров'я людини. За міжнародними стандартами нормальний атмосферний тиск – 760 мм рт. стовпа за температури 0°C. Цей показник розрахований на ті ділянки суші, які знаходяться практично нарівні з рівнем моря. З висотою тиск знижується. Тому, наприклад, для Санкт-Петербурга 760 мм рт. - це норма. А ось для Москви, яка розташована вище, нормальний тиск – 748 мм рт.ст.

Тиск змінюється не тільки по вертикалі, а й по горизонталі. Особливо це відчувається під час проходження циклонів.

Будова атмосфери

Атмосфера нагадує листковий пиріг. І кожний шар має свої особливості.

. Тропосфера- Найближчий до Землі шар. "Товщина" цього шару змінюється при віддаленні від екватора. Над екватором шар простягається вгору на 16-18 км, в помірних зонах – на 10-12 км, на полюсах – на 8-10 км.

Саме тут міститься 80% усієї маси повітря та 90% водяної пари. Тут утворюються хмари, виникають циклони та антициклони. Температура повітря залежить від висоти. В середньому вона знижується на 0,65 ° C на кожні 100 метрів.

. Тропопауза- Перехідний шар атмосфери. Його висота – від кількох сотень метрів до 1-2 км. Температура повітря влітку вища, ніж узимку. Так, наприклад, над полюсами взимку -65 ° C. А над екватором будь-якої пори року тримається -70 ° C.

. Стратосфера- Це шар, верхня межа якого проходить на висоті 50-55 км. Турбулентність тут низька, вміст водяної пари в повітрі – незначний. Проте дуже багато озону. Максимальна його концентрація – на висоті 20-25 км. У стратосфері температура повітря починає підвищуватися і досягає позначки +0,8 ° C. Це зумовлено тим, що озоновий шар взаємодіє з ультрафіолетовим випромінюванням.

. Стратопауза- невисокий проміжний шар між стратосферою та наступною за нею мезосферою.

. Мезосфера- верхня межа цього шару – 80-85 кілометрів. Тут відбуваються складні фотохімічні процеси за участю вільних радикалів. Саме вони забезпечують те ніжне блакитне сяйво нашої планети, яке бачиться з космосу.

У мезосфері згоряє більшість комет та метеоритів.

. Мезопауза- наступний проміжний шар, температура повітря в якому -90°.

. Термосфера- нижня межа починається висоті 80 - 90 км, а верхня межа шару проходить приблизно за позначкою 800 км. Температура повітря зростає. Вона може змінюватись від +500°C до +1000°C. Протягом доби температурні коливання складають сотні градусів! Але повітря тут настільки розріджене, що розуміння терміна "температура" як ми його уявляємо, тут не доречно.

. Іоносфера- поєднує мезосферу, мезопаузу та термосферу. Повітря тут складається в основному з молекул кисню та азоту, а також із квазінейтральної плазми. Сонячні промені, потрапляючи в іоносферу, сильно іонізують молекули повітря. У нижньому шарі (до 90 км) ступінь іонізація низька. Що вище, то більше вписувалося іонізація. Так, на висоті 100–110 км електрони концентруються. Це сприяє відображенню коротких та середніх радіохвиль.

Найважливіший шар іоносфери – верхній, що знаходиться на висоті 150-400 км. Його особливість у тому, що він відображає радіохвилі, а це сприяє передачі радіосигналів на значні відстані.

Саме в іоносфері відбувається таке явище, як полярне сяйво.

. Екзосфера- складається з атомів кисню, гелію та водню. Газ у цьому шарі дуже розріджений і часто атоми водню вислизають у космічний простір. Тому цей шар і називають "зоною розсіювання".

Першим ученим, який припустив, що наша атмосфера має вагу, був італієць Е. Торрічеллі. Остап Бендер, наприклад, у романі "Золоте теля" журився, що на кожну людину тисне повітряний стовп вагою 14 кг! Але великий комбінатор трохи помилявся. Доросла людина відчуває на себе тиск 13-15 тонн! Але ми не відчуваємо цієї тяжкості, тому що атмосферний тиск урівноважується внутрішнім тиском людини. Вага нашої атмосфери становить 5300000000000 000 тонн. Цифра колосальна, хоча це лише мільйонна частина ваги нашої планети.