Чому дорівнює синус кута у прямокутному трикутнику. Що таке синус та косинус. Вирази через комплексні числа

Ставлення протилежного катета до гіпотенузи називають синусом гострого кутапрямокутний трикутник.

\sin \alpha = \frac(a)(c)

Косинус гострого кута прямокутного трикутника

Відношення прилеглого катета до гіпотенузи називають косинус гострого кутапрямокутний трикутник.

\cos \alpha = \frac(b)(c)

Тангенс гострого кута прямокутного трикутника

Ставлення протилежного катета до прилеглого катета називають тангенсом гострого кутапрямокутний трикутник.

tg \alpha = \frac(a)(b)

Котангенс гострого кута прямокутного трикутника

Відношення прилеглого катета до протилежного катета називають котангенсом гострого кутапрямокутний трикутник.

ctg \alpha = \frac(b)(a)

Синус довільного кута

Ордината точки на одиничному колі , якому відповідає кут \alpha називають синусом довільного кутаповороту \ alpha .

\sin \alpha=y

Косинус довільного кута

Абсцис точки на одиничному колі, якому відповідає кут \alpha називають косинус довільного кутаповороту \ alpha .

\cos \alpha=x

Тангенс довільного кута

Ставлення синуса довільного кута повороту \alpha до його косинусу називають тангенсом довільного кутаповороту \ alpha .

tg \alpha = y_(A)

tg \alpha = \frac(\sin \alpha)(\cos \alpha)

Котангенс довільного кута

Відношення косинуса довільного кута повороту \alpha до його синусу називають котангенсом довільного кутаповороту \ alpha .

ctg \alpha =x_(A)

ctg \alpha = \frac(\cos \alpha)(\sin \alpha)

Приклад знаходження довільного кута

Якщо \alpha - деякий кут AOM , де M - точка одиничного кола, то

\sin \alpha=y_(M) , \cos \alpha=x_(M) , tg \alpha=\frac(y_(M))(x_(M)), ctg \alpha=\frac(x_(M))(y_(M)).

Наприклад, якщо \angle AOM = -\frac(\pi)(4), то: ордината точки M дорівнює -\frac(\sqrt(2))(2), абсцису дорівнює \frac(\sqrt(2))(2)і тому

\sin \left (-\frac(\pi)(4) \right)=-\frac(\sqrt(2))(2);

\cos \left (\frac(\pi)(4) \right)=\frac(\sqrt(2))(2);

tg;

ctg \left (-\frac(\pi)(4) \right)=-1.

Таблиця значень синусів косінусів тангенсів котангенсів

Значення основних кутів, що часто зустрічаються, наведені в таблиці:

0^(\circ) (0)30^(\circ)\left(\frac(\pi)(6)\right) 45^(\circ)\left(\frac(\pi)(4)\right) 60^(\circ)\left(\frac(\pi)(3)\right) 90^(\circ)\left(\frac(\pi)(2)\right) 180^(\circ)\left(\pi\right)270^(\circ)\left(\frac(3\pi)(2)\right) 360^(\circ)\left(2\pi\right)
\sin\alpha0 \frac12\frac(\sqrt 2)(2)\frac(\sqrt 3)(2)1 0 −1 0
\cos\alpha1 \frac(\sqrt 3)(2)\frac(\sqrt 2)(2)\frac120 −1 0 1
tg \alpha0 \frac(\sqrt 3)(3)1 \sqrt30 0
ctg \alpha\sqrt31 \frac(\sqrt 3)(3)0 0

Сінусгострого кута α прямокутного трикутника – це відношення протилежногокатета до гіпотенузи.
Позначається так: sin α.

Косінусгострого кута α прямокутного трикутника – це відношення прилеглого катета до гіпотенузи.
Позначається так: cos α.


Тангенс
гострого кута α – це відношення протилежного катета до прилеглого катета.
Позначається так: tg.

Котангенсгострого кута α – це відношення прилеглого катета до протилежного.
Позначається так: ctg?

Синус, косинус, тангенс та котангенс кута залежать тільки від величини кута.

Правила:

Основні тригонометричні тотожності у прямокутному трикутнику:

(α – гострий кут, що протилежить катету b і прилеглий до катета a . Сторона з - Гіпотенуза. β - Другий гострий кут).

b
sin α = -
c

sin 2 α + cos 2 α = 1

a
cos α = -
c

1
1 + tg 2 α = -
cos 2 α

b
tg α = -
a

1
1 + ctg 2 α = -
sin 2 α

a
ctg α = -
b

1 1
1 + -- = --
tg 2 α sin 2 α

sin α
tg α = -
cos α


При зростанні гострого кута
sin α іtg α зростають, аcos α зменшується.


Для будь-якого гострого кута:

sin (90° - α) = cos α

cos (90° - α) = sin α

Приклад-пояснення:

Нехай у прямокутному трикутнику АВС
АВ = 6,
НД = 3,
кут А = 30 º.

З'ясуємо синус кута А та косинус кута В.

Рішення .

1) Спочатку знаходимо величину кута В. Тут все просто: так як у прямокутному трикутнику сума гострих кутів дорівнює 90 º, то кут В = 60 º:

В = 90 º - 30 º = 60 º.

2) Обчислимо sin A. Ми знаємо, що синус дорівнює відношенню протилежного катета до гіпотенузи. Для кута А протилежним катетом є сторона ЗС. Отже:

BC 3 1
sin A = - = - = -
AB 6 2

3) Тепер обчислимо cos B. Ми знаємо, що косинус дорівнює відношенню прилеглого катета до гіпотенузи. Для кута В ​​прилеглим катетом є та сама сторона ВС. Це означає, що знову треба розділити ВС на АВ – тобто здійснити самі дії, як і під час обчислення синуса кута А:

BC 3 1
cos B = - = - = -
AB 6 2

У результаті виходить:
sin A = cos B = 1/2.

sin 30º = cos 60º = 1/2.

З цього випливає, що у прямокутному трикутнику синус одного гострого кута дорівнює косинусу іншого гострого кута – і навпаки. Саме це і означають наші дві формули:
sin (90° - α) = cos α
cos (90° - α) = sin α

Переконаємося в цьому ще раз:

1) Нехай α = 60º. Підставивши значення в формулу синуса, отримаємо:
sin (90º – 60º) = cos 60º.
sin 30 º = cos 60 º.

2) Нехай α = 30 º. Підставивши значення в формулу косинуса, отримаємо:
cos (90 ° - 30 º) = sin 30 º.
cos 60 ° = sin 30 º.

(Докладніше про тригонометрію - див. розділ Алгебра)


У цій статті ми покажемо, як даються визначення синуса, косинуса, тангенсу та котангенсу кута та числа в тригонометрії. Тут ми поговоримо про позначення, наведемо приклади записів, дамо графічні ілюстрації. На закінчення проведемо паралель між визначеннями синуса, косинуса, тангенсу та котангенсу в тригонометрії та геометрії.

Навігація на сторінці.

Визначення синуса, косинуса, тангенсу та котангенсу

Простежимо за тим, як формуються уявлення про синус, косинус, тангенс і котангенс в шкільному курсіматематики. На уроках геометрії дається визначення синуса, косинуса, тангенсу та котангенсу гострого кута у прямокутному трикутнику. А пізніше вивчається тригонометрія, де йдеться про синус, косинус, тангенс і котангенс кута повороту і числа. Наведемо всі ці визначення, наведемо приклади та дамо необхідні коментарі.

гострого кута в прямокутному трикутнику

З курсу геометрії відомі визначення синуса, косинуса, тангенсу та котангенсу гострого кута у прямокутному трикутнику. Вони даються як відношення сторін прямокутного трикутника. Наведемо їх формулювання.

Визначення.

Синус гострого кута у прямокутному трикутнику- Це ставлення протилежного катета до гіпотенузи.

Визначення.

Косинус гострого кута у прямокутному трикутнику- Це ставлення прилеглого катета до гіпотенузи.

Визначення.

Тангенс гострого кута у прямокутному трикутнику- Це ставлення протилежного катета до прилеглого.

Визначення.

Котангенс гострого кута у прямокутному трикутнику- Це ставлення прилеглого катета до протилежного.

Там же вводяться позначення синуса, косинуса, тангенсу та котангенсу – sin, cos, tg і ctg відповідно.

Наприклад, якщо АВС – прямокутний трикутник із прямим кутом З , то синус гострого кута A дорівнює відношенню протилежного катета BC до гіпотенузи AB , тобто, sin∠A=BC/AB .

Ці визначення дозволяють обчислювати значення синуса, косинуса, тангенсу та котангенсу гострого кута за відомими довжинами сторін прямокутного трикутника, а також за відомими значеннями синуса, косинуса, тангенсу, котангенсу та довжиною однієї зі сторін знаходити довжини інших сторін. Наприклад, якби знали, що у прямокутному трикутнику катет AC дорівнює 3 , а гіпотенуза AB дорівнює 7 , ми могли б обчислити значення косинуса гострого кута A за визначенням: cos∠A=AC/AB=3/7 .

Кута повороту

У тригонометрії на кут починають дивитися ширше - вводять поняття кута повороту. Величина кута повороту, на відміну від гострого кута, не обмежена рамками від 0 до 90 градусів, кут повороту в градусах (і в радіанах) може виражатися будь-яким дійсним числом від −∞ до +∞ .

У цьому вся світлі дають визначення синуса, косинуса, тангенса і котангенса не гострого кута, а кута довільної величини - кута повороту. Вони даються через координати x і y точки A 1 , яку переходить так звана початкова точка A(1, 0) після її повороту на кут α навколо точки O - початку прямокутної декартової системи координат і центру одиничного кола .

Визначення.

Синус кута поворотуα - це ордината точки A 1 тобто sinα = y .

Визначення.

Косинусом кута поворотуα називають абсцис точки A 1 , тобто, cosα = x .

Визначення.

Тангенс кута поворотуα - це відношення ординати точки A 1 до її абсциси, тобто tgα=y/x.

Визначення.

Котангенсом кута поворотуα називають відношення абсциси точки A 1 до її ординати, тобто ctgα=x/y .

Синус і косинус визначені для будь-якого кута α, тому що ми завжди можемо визначити абсцису та ординату точки, яка виходить в результаті повороту початкової точки на кут α. А тангенс та котангенс визначені не для будь-якого кута. Тангенс не визначений для таких кутів α , при яких початкова точка перетворюється на точку з нульовою абсцисою (0, 1) або (0, −1) , а це має місце при кутах 90°+180°·k , k∈Z (π /2+π·k радий). Справді, за таких кутах повороту вираз tgα=y/x немає сенсу, оскільки у ньому присутній розподіл на нуль. Що ж до котангенсу, то він не визначений для таких кутів α , при яких початкова точка переходить до точки з нульовою ординатою (1, 0) або (-1, 0) , а це має місце для кутів 180°k, k ∈Z (π·k радий).

Отже, синус і косинус визначені для будь-яких кутів повороту, тангенс визначений для всіх кутів, крім 90°+180°k, k∈Z (π/2+πk радий), а котангенс – для всіх кутів, крім 180° ·k, k∈Z (π·k радий).

У визначеннях фігурують вже відомі нам позначення sin, cos, tg і ctg, вони використовуються і для позначення синуса, косинуса, тангенсу та котангенсу кута повороту (іноді можна зустріти позначення tan і cot, що відповідають тангенсу та котангенсу). Так синус кута повороту 30 градусів можна записати як sin30° записам tg(−24°17′) і ctgα відповідають тангенс кута повороту −24 градуси 17 хвилин і котангенс кута повороту α . Нагадаємо, що при записі радіанної міри кута позначення "рад" часто опускають. Наприклад, косинус кута повороту в три піради зазвичай позначають cos3·π.

На закінчення цього пункту варто зауважити, що в розмові про синус, косинус, тангенс і котангенс кута повороту часто опускають словосполучення кут повороту або слово повороту. Тобто замість фрази "синус кута повороту альфа" зазвичай використовують фразу "синус кута альфа" або ще коротше - "синус альфа". Це саме стосується і косинуса, і тангенсу, і котангенсу.

Також скажемо, що визначення синуса, косинуса, тангенса і котангенса гострого кута в прямокутному трикутнику узгоджуються з щойно даними визначеннями синуса, косинуса, тангенса і котангенса кута повороту величиною від 0 до 90 градусів. Це ми обґрунтуємо.

Числа

Визначення.

Синусом, косинусом, тангенсом і котангенсом числа t називають число, що дорівнює синусу, косинусу, тангенсу і котангенсу кута повороту в t радіанів відповідно.

Наприклад, косинус числа 8 π за визначенням є число, що дорівнює косинусу кута в 8 π рад. А косинус кута в 8 π рад дорівнює одиниці, тому, косинус числа 8 π дорівнює 1 .

Існує й інший підхід до визначення синуса, косинуса, тангенсу та котангенсу числа. Він у тому, що кожному дійсному числу t ставиться у відповідність точка одиничного кола з центром на початку прямокутної системи координат і синус, косинус, тангенс і котангенс визначаються через координати цієї точки. Зупинимося на цьому детальніше.

Покажемо, як встановлюється відповідність між дійсними числами та точками кола:

  • числу 0 ставиться у відповідність початкова точка A(1, 0);
  • позитивному числу t ставиться у відповідність точка одиничного кола, в яке ми потрапимо, якщо рухатимемося по колу з початкової точки в напрямку проти годинникової стрілки і пройдемо шлях довжиною t;
  • негативному числу t ставиться у відповідність точка одиничного кола, в яку ми потрапимо, якщо рухатимемося по колу з початкової точки в напрямку за годинниковою стрілкою і пройдемо шлях довжиною | t | .

Тепер переходимо до визначення синусу, косинуса, тангенсу і котангенсу числа t . Припустимо, що t відповідає точка кола A 1 (x, y) (наприклад, числу &pi/2; відповідає точка A 1 (0, 1) ).

Визначення.

Синусом числа t називають ординату точки одиничного кола, що відповідає числу t, тобто, sint = y.

Визначення.

Косинусом числа t називають абсцису точки одиничного кола, що відповідає числу t, тобто, cost = x.

Визначення.

Тангенсом числа t називають відношення ординати до абсцисі точки одиничного кола, що відповідає числу t, тобто, tgt=y/x. В іншому рівносильному формулюванні тангенс числа t - це відношення синуса цього числа до косинусу, тобто tgt = sint / cost.

Визначення.

Котангенсом числа t називають відношення абсциси до ординати точки одиничного кола, що відповідає числу t, тобто ctgt=x/y . Інше формулювання така: тангенс числа t - це відношення косинуса числа t до синуса числа t: ctgt = cost / sint.

Тут зазначимо, що дані визначення узгоджуються з визначенням, даним на початку цього пункту. Дійсно, точка одиничного кола, відповідна числу t збігається з точкою, отриманої в результаті повороту початкової точки на кут в t радіанів.

Ще варто з'ясувати такий момент. Допустимо, перед нами запис sin3 . Як зрозуміти, про синус числа 3 або про синус кута повороту 3 радіана йдеться? Зазвичай це з контексту, інакше це швидше за все не має принципового значення.

Тригонометричні функції кутового та числового аргументу

Згідно з даними в попередньому пункті визначенням, кожному куту повороту відповідають цілком певне значення sinα, як і значення cosα. Крім того, всім кутам повороту, відмінним від 90°+180°·k , k∈Z (π/2+π·k рад) відповідають значення tgα , а відмінним від 180°·k , k∈Z (π·k рад ) – значення ctgα. Тому sinα, cosα, tgα та ctgα - це функції кута α. Інакше кажучи – це функції кутового аргумента.

Аналогічно можна говорити і про функції синус, косинус, тангенс та котангенс числового аргументу. Дійсно, кожному дійсному числу t відповідає цілком певне значення sint, як і cost. Крім того, всім числам, відмінним від π/2+π·k , k∈Z відповідають значення tgt , а числам π·k , k∈Z - значення ctgt .

Функції синус, косинус, тангенс та котангенс називають основними тригонометричними функціями.

З контексту зазвичай зрозуміло, з тригонометричними функціями кутового аргументу чи числового аргументу ми маємо справу. В іншому випадку ми можемо вважати незалежну змінну як мірою кута (кутовим аргументом), так і числовим аргументом.

Проте, у школі переважно вивчаються числові функції, тобто, функції, аргументи яких, як і відповідні їм значення функції, є числами. Тому якщо йдеться саме про функції, то доцільно вважати тригонометричні функціїфункціями числових аргументів.

Зв'язок визначень з геометрії та тригонометрії

Якщо розглядати кут повороту величиною від 0 до 90 градусів, то дані в контексті тригонометрії визначення синуса, косинуса, тангенса і котангенса кута повороту повністю узгоджуються з визначеннями синуса, косинуса, тангенса і котангенса гострого кута в прямокутному трикутнику, які даються в курсі геометрії. Обґрунтуємо це.

Зобразимо у прямокутній декартовій системікоординат Oxy одиничне коло. Зазначимо початкову точку A(1, 0). Повернемо її на кут величиною від 0 до 90 градусів, отримаємо точку A 1 (x, y) . Опустимо з точки А1 на вісь Ox перпендикуляр A1H.

Легко бачити, що у прямокутному трикутнику кут A 1 OH дорівнює кутуповороту α довжина прилеглого до цього кута катета OH дорівнює абсцисі точки A 1 тобто | а довжина гіпотенузи OA 1 дорівнює одиниці, оскільки вона є радіусом одиничного кола. Тоді за визначенням з геометрії синус гострого кута у прямокутному трикутнику A 1 OH дорівнює відношенню протилежного катета до гіпотенузи, тобто, sinα=|A 1 H|/|OA 1 |=y/1=y . А за визначенням з тригонометрії синус кута повороту дорівнює ординаті точки A 1 , тобто, sinα = y . Звідси видно, що визначення синуса гострого кута в прямокутному трикутнику еквівалентне визначенню синуса кута повороту при α від 0 до 90 градусів.

Аналогічно можна показати, що і визначення косинуса, тангенсу та котангенсу гострого кута узгоджуються з визначеннями косинуса, тангенсу та котангенсу кута повороту α .

Список літератури.

  1. Геометрія. 7-9 класи: навч. для загальноосвіт. установ/[Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев та ін]. - 20-те вид. М.: Просвітництво, 2010. – 384 с.: іл. - ISBN 978-5-09-023915-8.
  2. Погорєлов А. В.Геометрія: Навч. для 7-9 кл. загальноосвіт. установ/А. В. Погорелов. - 2-ге вид - М.: Просвітництво, 2001. - 224 с.: іл. - ISBN 5-09-010803-X.
  3. Алгебра та елементарні функції : Навчальний посібникдля учнів 9 класу середньої школи/ Є. С. Кочетков, Є. С. Кочеткова; За редакцією доктора фізико-математичних наук О. Н. Головіна. - 4-те вид. М: Просвітництво, 1969.
  4. Алгебра:Навч. для 9 кл. середовищ. шк./Ю. Н. Макарічев, Н. Г. Міндюк, К. І. Нешков, С. Б. Суворова; За ред. С. А. Теляковського.- М.: Просвітництво, 1990.- 272 с.: Іл.- ISBN 5-09-002727-7
  5. Алгебрата початку аналізу: Навч. для 10-11 кл. загальноосвіт. установ / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудніцин та ін; За ред. А. Н. Колмогорова. - 14-те вид. - М.: Просвітництво, 2004. - 384 с.: Іл. - ISBN 5-09-013651-3.
  6. Мордковіч А. Г.Алгебра та початку аналізу. 10 клас. О 2 год. Ч. 1: підручник для загальноосвітніх установ ( профільний рівень) / А. Г. Мордкович, П. В. Семенов. - 4-те вид., Дод. – М.: Мнемозіна, 2007. – 424 с.: іл. ISBN 978-5-346-00792-0.
  7. Алгебрата початку математичного аналізу. 10 клас: навч. для загальноосвіт. установ: базовий та профіл. рівні/[Ю. М. Колягін, М. В. Ткачова, Н. Є. Федорова, М. І. Шабунін]; за ред. А. Б. Жижченко. - 3-тє вид. – І.: Просвітництво, 2010. – 368 с.: Іл. – ISBN 978-5-09-022771-1.
  8. Башмаков М. І.Алгебра та початку аналізу: Навч. для 10-11 кл. середовищ. шк. - 3-тє вид. - М: Просвітництво, 1993. - 351 с.: іл. - ISBN 5-09-004617-4.
  9. Гусєв В. А., Мордкович А. Г.Математика (посібник для вступників до технікумів): Навч. посібник.- М.; Вищ. шк., 1984.-351 с., іл.

Синус є однією з основних тригонометричних функцій, застосування якої не обмежене лише геометрією. Таблиці обчислення тригонометричних функцій, як і інженерні калькулятори, не завжди під рукою, а обчислення синуса часом необхідне рішення різних завдань. Взагалі, обчислення синуса допоможе закріпити креслярські навички та знання тригонометричних тотожностей.

Ігри з лінійкою та олівцем

Просте завдання: як знайти синус кута, намальованого на папері? Для вирішення знадобиться звичайна лінійка, трикутник (або циркуль) та олівець. Найпростішим способом обчислити синус кута можна розділивши дальній катет трикутника з прямим кутом на довгу сторону - гіпотенузу. Таким чином, спочатку потрібно доповнити гострий кут до фігури прямокутного трикутника, прокресливши перпендикулярну до одного з променів лінію на довільній відстані від вершини кута. Потрібно дотримати кут саме 90 °, для чого нам і знадобиться канцелярський трикутник.

Використання циркуля трохи точніше, але займе більше часу. На одному з променів потрібно відзначити 2 точки на деякій відстані, налаштувати на циркулі радіус, приблизно рівний відстані між точками, і прокреслити півкола з центрами в цих точках до отримання перетинів цих ліній. Поєднавши точки перетину наших кіл між собою, ми отримаємо строгий перпендикуляр до променя нашого кута, залишається лише продовжити лінію до перетину з іншим променем.

В отриманому трикутнику потрібно лінійкою виміряти бік навпроти кута і довгу бік одному з променів. Відношення першого виміру до другого і буде шуканою величиною синуса гострого кута.

Знайти синус для кута більше 90°

Для тупого кута завдання не набагато складніше. Потрібно прокреслити промінь з вершини в протилежний бік за допомогою лінійки для утворення прямої з одним з променів кута, що цікавить нас. З отриманим гострим кутомслід надходити, як описано вище, синуси суміжних кутів, що утворюють разом розгорнутий кут 180°, рівні.

Обчислення синуса за іншими тригонометричними функціями

Також обчислення синуса можливе, якщо відомі значення інших тригонометричних функцій кута або хоча б довжини сторін трикутника. У цьому нам допоможуть тригонометричні тотожності. Розберемо найпоширеніші приклади.

Як знаходити синус при відомому косинус кута? Перше тригонометричне тотожність, що виходить з теореми Піфагора, свідчить, що сума квадратів синуса і косинуса одного і того ж кута дорівнює одиниці.

Як знаходити синус за відомого тангенсу кута? Тангенс отримують розподілом далекого катета на ближній або поділом синуса на косинус. Таким чином, синусом буде твір косинуса на тангенс, а квадрат синусу буде квадрат цього твору. Замінюємо косинус у квадраті на різницю між одиницею та квадратним синусом згідно з першою тригонометричною тотожністю і шляхом нехитрих маніпуляцій наводимо рівняння до обчислення квадратного синуса через тангенс, відповідно, для обчислення синуса доведеться витягти корінь з отриманого результату.

Як знаходити синус за відомого котангенсу кута? Значення котангенсу можна обчислити, розділивши довжину ближнього від кута катета на довжину далекого, а також поділивши косинус на синус, тобто котангенс - функція, зворотна тангенсу щодо числа 1. Для розрахунку синуса можна обчислити тангенс за формулою tg α = 1 / ct скористатися формулою у другому варіанті. Також можна вивести пряму формулу за аналогією з тангенсом, яка виглядатиме таким чином.

Як знаходити синус по трьох сторонах трикутника

Існує формула для знаходження довжини невідомої сторони будь-якого трикутника, не тільки прямокутного, по двох відомим сторонамз використанням тригонометричної функції косинуса протилежного кута. Виглядає вона так.

Ну, а синус можна далі розрахувати за косинус згідно з формулами вище.

Лекція: Синус, косинус, тангенс, котангенс довільного кута

Синус, косинус довільного кута


Щоб зрозуміти, що таке тригонометричні функції, звернемося до кола з одиничним радіусом. Це коломає центр на початку координат на координатній площині. Для визначення заданих функційбудемо використовувати радіус-вектор ВР, який починається в центрі кола, а точка Рє точкою кола. Даний радіус-вектор утворює кут альфа з віссю ОХ. Оскільки коло має радіус, що дорівнює одиниці, то ОР = R = 1.

Якщо з точки Ропустити перпендикуляр на вісь ОХ, то отримаємо прямокутний трикутник з гіпотенузою, що дорівнює одиниці.


Якщо радіус-вектор рухається за годинниковою стрілкою, то цей напрямок називається негативним, якщо він рухається проти руху годинникової стрілки - позитивним.


Синусом кута ВР, є ордината точки Рвектор на колі.

Тобто для отримання значення синуса даного кута альфа необхідно визначитися з координатою Уна площині.

Як це значення було отримано? Так як ми знаємо, що синус довільного кута в прямокутному трикутнику - це відношення протилежного катета до гіпотенузи, отримаємо, що

А оскільки R = 1, то sin(α) = y 0 .


У одиничному колі значення ординати може бути менше -1 і більше 1, отже,

Синус набуває позитивного значення в першій і другій чверті одиничного кола, а в третій і четвертій - негативне.

Косинусом кутаданого кола, утвореного радіусом-вектором ВР, є абсциса точки Рвектор на колі.

Тобто для отримання значення косинуса даного кута альфа необхідно визначитися з координатою Хна площині.


Косинус довільного кута у прямокутному трикутнику - це відношення прилеглого катета до гіпотенузи, отримаємо, що


А оскільки R = 1, то cos(α) = x 0 .

У одиничному колі значення абсциси може бути менше -1 і більше 1, отже,

Косинус набуває позитивного значення в першій і четвертій чверті одиничного кола, а в другій і в третій - негативне.

Тангенсомдовільного кутавважається ставлення синуса до косінус.

Якщо розглядати прямокутний трикутник, це відношення протилежного катета до прилеглого. Якщо ж йдеться про одиничне коло, то це ставлення ординати до абсцису.

Судячи з даних відносин, можна зрозуміти, що тангенс не може існувати, якщо значення абсциси дорівнює нулю, тобто при куті 90 градусів. Всі інші значення може приймати тангенс.

Тангенс має позитивне значення у першій та третій чверті одиничного кола, а у другій та четвертій є негативним.