Як вирішувати подвійні нерівності із модулем. Рівняння із модулем. Інші способи розв'язання рівнянь та нерівностей з модулем

Математика є символом мудрості науки,

зразком наукової суворості та простоти,

еталоном досконалості та краси в науці.

Російський філософ, професор О.В. Волошинів

Нерівності з модулем

Найбільш складними завданнями шкільної математики є нерівності, що містять змінні під знаком модуля. Для успішного вирішеннятаких нерівностей необхідно добре знати властивості модуля та мати навички їх використання.

Основні поняття та властивості

Модуль ( абсолютна величина) дійсного числа позначається і визначається так:

До простим властивостяммодуля відносяться такі співвідношення:

І.

Зазначимо, що останні дві властивості справедливі для будь-якого парного ступеня.

Крім того, якщо, де, то і

Більше складні властивостімодуля, які можна ефективно використовувати при вирішенні рівнянь та нерівностей із модулями, формулюються за допомогою наступних теорем:

Теорема 1.Для будь-яких аналітичних функційі справедлива нерівність.

Теорема 2.Рівність рівносильно нерівності.

Теорема 3.Рівність рівносильно нерівності.

Найбільш поширеними у шкільній математиці нерівностями, містять невідомі змінні під знаком модуля, є нерівності видуі де деяка позитивна константа.

Теорема 4.Нерівність рівносильно подвійній нерівності, а розв'язання нерівностізводиться до розв'язання сукупності нерівностейта .

Ця теорема є окремим випадком теорем 6 і 7.

Більш складними нерівностями, містять модуль, є нерівності виду, та .

Методи вирішення таких нерівностей можна сформулювати у вигляді наступних трьох теорем.

Теорема 5.Нерівність рівносильно сукупності двох систем нерівностей

І (1)

Доведення.Оскільки , то

Звідси випливає справедливість (1).

Теорема 6.Нерівність рівносильно системі нерівностей

Доведення.Так як , то з нерівностівипливає, що . За такої умови нерівністьі при цьому друга система нерівностей (1) виявиться несумісною.

Теорему доведено.

Теорема 7.Нерівність рівносильно сукупності однієї нерівності та двох систем нерівностей

І (3)

Доведення.Оскільки , то нерівність завжди виконуєтьсяякщо .

Нехай тоді нерівністьбуде рівносильно нерівності, з якого випливає сукупність двох нерівностейта .

Теорему доведено.

Розглянемо типові приклади розв'язання задач на тему «Нерівності, що містять змінні під знаком модуля».

Вирішення нерівностей з модулем

Найбільш простим методом вирішення нерівностей з модулем є метод, заснований на розкритті модулів. Цей метод є універсальним, однак у загальному випадку його застосування може призвести до громіздких обчислень. Тому учні повинні знати й інші (ефективніші) методи та прийоми розв'язання таких нерівностей. Зокрема, необхідно мати навички застосування теорем, наведених у цій статті.

приклад 1.Розв'язати нерівність

. (4)

Рішення.Нерівність (4) вирішуватимемо «класичним» методом – методом розкриття модулів. З цією метою розіб'ємо числову вісьточками та на інтервали та розглянемо три випадки.

1. Якщо , то , , , і нерівність (4) набуває виглядуабо .

Оскільки тут розглядається випадок , є рішенням нерівності (4).

2. Якщо , то з нерівності (4) отримуємоабо . Оскільки перетин інтерваліві є порожнім, то на розглянутому інтервалі розв'язків нерівності (4) немає.

3. Якщо , та нерівність (4) набуває виглядуабо . Очевидно, що також є розв'язком нерівності (4).

Відповідь: , .

приклад 2.Розв'язати нерівність.

Рішення.Припустимо, що. Так як , то задана нерівність набуває виглядуабо . Оскільки , то і звідси випливаєабо .

Однак , тому чи .

приклад 3.Розв'язати нерівність

. (5)

Рішення.Так як , та нерівність (5) рівнозначна нерівностямабо . Звідси, згідно з теоремою 4, маємо сукупність нерівностейта .

Відповідь: , .

приклад 4.Розв'язати нерівність

. (6)

Рішення.Позначимо. Тоді з нерівності (6) отримуємо нерівності , , або .

Звідси, використовуючи метод інтервалів, Отримуємо . Так як , то тут маємо систему нерівностей

Рішенням першої нерівності системи (7) є об'єднання двох інтерваліві , а рішенням другої нерівності – подвійна нерівність. Звідси випливає , що розв'язання системи нерівностей (7) є об'єднанням двох інтервалівта .

Відповідь: ,

Приклад 5.Розв'язати нерівність

. (8)

Рішення. Перетворимо нерівність (8) таким чином:

Або.

Застосовуючи метод інтервалів, отримуємо розв'язання нерівності (8).

Відповідь: .

Примітка. Якщо за умови теореми 5 покласти і , отримаємо .

Приклад 6.Розв'язати нерівність

. (9)

Рішення. З нерівності (9) випливає. Перетворимо нерівність (9) таким чином:

Або

Так як , то чи .

Відповідь: .

Приклад 7.Розв'язати нерівність

. (10)

Рішення.Так як і , то чи .

В зв'язку з цим і нерівність (10) набуває вигляду

Або

. (11)

Звідси випливає, що або . Оскільки , те й з нерівності (11) витікає або .

Відповідь: .

Примітка. Якщо до лівої частини нерівності (10) застосувати теорему 1, то отримаємо . Звідси і з нерівності (10) випливаєщо або . Так як , та нерівність (10) набуває виглядуабо .

Приклад 8.Розв'язати нерівність

. (12)

Рішення.Оскільки , то і з нерівності (12) випливаєабо . Однак , тому чи . Звідси отримуємо або .

Відповідь: .

Приклад 9.Розв'язати нерівність

. (13)

Рішення.Відповідно до теореми 7 рішенням нерівності (13) є або .

Нехай тепер. В такому випадку і нерівність (13) набуває виглядуабо .

Якщо об'єднати інтервалиі , то отримаємо розв'язання нерівності (13) виду.

приклад 10.Розв'язати нерівність

. (14)

Рішення.Перепишемо нерівність (14) у рівносильному вигляді: . Якщо до лівої частини цієї нерівності застосувати теорему 1, то отримаємо нерівність .

Звідси і з теореми 1 випливає, що нерівність (14) виконується для будь-яких значень.

Відповідь: будь-яке число.

Приклад 11.Розв'язати нерівність

. (15)

Рішення. Застосовуючи теорему 1 до лівої частини нерівності (15), отримуємо . Звідси і з нерівності (15) випливає рівняння, яке має вигляд.

Відповідно до теореми 3, рівняння рівносильно нерівності. Звідси отримуємо.

приклад 12.Розв'язати нерівність

. (16)

Рішення. З нерівності (16), згідно з теореми 4, отримуємо систему нерівностей

При розв'язанні нерівностіскористаємося теоремою 6 і отримаємо систему нерівностейз якої випливає.

Розглянемо нерівність. Відповідно до теореми 7, отримуємо сукупність нерівностейта . Друга нерівність сукупності справедлива для будь-якого дійсного.

Отже, рішенням нерівності (16) є.

приклад 13.Розв'язати нерівність

. (17)

Рішення.Відповідно до теореми 1 можна записати

(18)

Беручи до уваги нерівність (17), робимо висновок у тому, що обидві нерівності (18) звертаються до рівності, тобто. має місце система рівнянь

За теоремою 3 дана система рівнянь рівносильна системі нерівностей

або

приклад 14.Розв'язати нерівність

. (19)

Рішення.Так як, то. Помножимо обидві частини нерівності (19) на вираз, який для будь-яких значень набуває лише позитивних значень. Тоді отримаємо нерівність, яка рівнозначна нерівності (19), виду

Звідси отримуємо або де. Так як і , то рішенням нерівності (19) єта .

Відповідь: , .

Для більш глибокого вивчення методів вирішення нерівностей з модулем можна порадити звернутися до навчальних посібників, наведених у списку рекомендованої літератури.

1. Збірник завдань з математики для вступників у втузи / За ред. М.І. Сканаві. - М.: Світ та Освіта, 2013. - 608 с.

2. Супрун В.П. Математика для старшокласників: методи розв'язання та докази нерівностей. - М.: Ленанд / URSS, 2018. - 264 с.

3. Супрун В.П. Математика для старшокласників: нестандартні методи розв'язання задач. - М.: КД "Ліброком" / URSS, 2017. - 296 с.

Залишились питання?

Щоб отримати допомогу репетитора – зареєструйтесь.

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Сьогодні, друзі, не буде жодних соплів та сентиментів. Замість них я без зайвих питань відправлю вас у бій з одним із найгрізніших супротивників у курсі алгебри 8—9 класу.

Так, ви все правильно зрозуміли: йдеться про нерівності з модулем. Ми розглянемо чотири основні прийоми, за допомогою яких ви навчитеся вирішувати близько 90% таких завдань. А що з рештою 10%? Що ж, про них ми поговоримо в окремому уроці.

Однак перед тим, як розбирати якісь там прийоми, хотілося б нагадати два факти, які потрібно знати. Інакше ви ризикуєте взагалі зрозуміти матеріал сьогоднішнього уроку.

Що вже треба знати

Капітан Очевидність хіба що натякає, що з розв'язання нерівностей з модулем необхідно знати дві речі:

  1. Як вирішуються нерівності;
  2. Що таке модуль |

Почнемо із другого пункту.

Визначення модуля

Тут все просто. Є два визначення: алгебраїчне та графічне. Для початку - алгебраїчне:

Визначення. Модуль числа $x$ - це або саме це число, якщо воно невід'ємне, або число, йому протилежне, якщо вихідний $x$ - все-таки негативний.

Записується це так:

\[\left| x \right|=\left\( \begin(align) & x,\ x\ge 0, \\ & -x,\ x \lt 0. \\end(align) \right.\]

Говорячи простою мовою, модуль це «число без мінуса». І саме в цій двоїстості (десь із вихідним числом нічого не треба робити, а десь доведеться прибрати якийсь там мінус) і полягає вся складність для учнів-початківців.

Є ще геометричне визначення. Його теж корисно знати, але звертатися до нього ми будемо лише у складних і якихось спеціальних випадках, де геометричний підхід зручніший за алгебраїчну (спойлер: не сьогодні).

Визначення. Нехай на числовій прямій відзначено точку $a$. Тоді модулем $ \ left | x-a \right|$ називається відстань від точки $x$ до точки $a$ на цій прямій.

Якщо накреслити картинку, то вийде щось на кшталт цього:


Графічне визначення модуля

Так чи інакше, з визначення модуля відразу випливає його ключова властивість: модуль числа завжди є величиною невід'ємною. Цей факт буде червоною ниткою йти через всю нашу сьогоднішню розповідь.

Розв'язання нерівностей. Метод інтервалів

Тепер розберемося з нерівностями. Їх існує безліч, але наше завдання зараз — вміти вирішувати хоча б найпростіші з них. Ті, які зводяться до лінійним нерівностям, і навіть до методу інтервалів.

На цю тему у мене є два великі уроки (між іншим, дуже, ДУЖЕ корисних — рекомендую вивчити):

  1. Метод інтервалів для нерівностей(особливо подивіться відео);
  2. Дробно-раціональні нерівності- дуже об'ємний урок, але після нього у вас взагалі не залишиться будь-яких питань.

Якщо ви все це знаєте, якщо фраза «перейдемо від нерівності до рівняння» не викликає у вас невиразне бажання убитися об стіну, то ви готові: ласкаво просимо до пекла до основної теми уроку.:)

1. Нерівності виду «Модуль менше функції»

Це одне з найпоширеніших завдань з модулями. Потрібно вирішити нерівність виду:

\[\left| f \right| \lt g\]

У ролі функцій $f$ і $g$ може бути будь-що, але зазвичай це многочлены. Приклади таких нерівностей:

\[\begin(align) & \left| 2x+3 \right| \lt x+7; \\ & \left| ((x)^(2))+2x-3 \right|+3\left(x+1 \right) \lt 0; \\ & \left| ((x) ^ (2))-2 \ left | x \right|-3 \right| \lt 2. \\end(align)\]

Всі вони вирішуються буквально в один рядок за схемою:

\[\left| f \right| \lt g\Rightarrow -g \lt f \lt g\quad \left(\Rightarrow \left\( \begin(align) & f \lt g, \& f \gt -g \\end(align) \right.\right)\]

Неважко помітити, що позбавляємося від модуля, але натомість отримуємо подвійну нерівність (або, що теж саме, систему з двох нерівностей). Проте цей перехід враховує абсолютно всі можливі проблеми: якщо число під модулем позитивне, метод працює; якщо негативно - все одно працює; і навіть за самої неадекватної функції дома $f$ чи $g$ метод все одно спрацює.

Звичайно, виникає питання: а простіше не можна? На жаль, не можна. У цьому вся фішка модуля.

Втім, вистачить філософствувати. Давайте вирішимо кілька завдань:

Завдання. Розв'яжіть нерівність:

\[\left| 2x+3 \right| \lt x+7\]

Рішення. Отже, маємо класичну нерівність виду «модуль менше» — навіть перетворювати нічого. Працюємо за алгоритмом:

\[\begin(align) & \left| f \right| \lt g\Rightarrow -g \lt f \lt g; \\ & \left| 2x+3 \right| \lt x+7\Rightarrow -\left(x+7 \right) \lt 2x+3 \lt x+7 \\end(align)\]

Не поспішайте розкривати дужки, перед якими стоїть «мінус»: цілком можливо, що через поспіху ви припуститеся образливої ​​помилки.

\-x-7 \lt 2x+3 \lt x+7\]

\[\left\( \begin(align) & -x-7 \lt 2x+3 \\ & 2x+3 \lt x+7 \\ \end(align) \right.\]

\[\left\( \begin(align) & -3x \lt 10 \\ & x \lt 4 \\ \end(align) \right.\]

\[\left\( \begin(align) & x \gt -\frac(10)(3) \\ & x \lt 4 \\\end(align) \right.\]

Завдання звелося до двох елементарних нерівностей. Зазначимо їх рішення на паралельних числових прямих:

Перетин множин

Перетином цих множин і буде відповідь.

Відповідь: $x\in \left(-\frac(10)(3);4 \right)$

Завдання. Розв'яжіть нерівність:

\[\left| ((x)^(2))+2x-3 \right|+3\left(x+1 \right) \lt 0\]

Рішення. Це завдання вже трохи складніше. Для початку усамітнимо модуль, перенісши друге доданок вправо:

\[\left| ((x)^(2))+2x-3 \right| \lt -3\left(x+1 \right)\]

Очевидно, перед нами знову нерівність виду «модуль менший», тому позбавляємося модуля за вже відомим алгоритмом:

\[-\left(-3\left(x+1 \right) \right) \lt ((x)^(2))+2x-3 \lt -3\left(x+1 \right)\]

Ось зараз увага: хтось скаже, що я трохи збоченець із усіма цими дужками. Але ще раз нагадаю, що наша ключова мета грамотно вирішити нерівність та отримати відповідь. Пізніше, коли ви досконало освоїте все, про що розказано в цьому уроці, можете самі перекручуватись як хочете: розкривати дужки, вносити мінуси і т.д.

А ми для початку просто позбудемося подвійного мінусу зліва:

\[-\left(-3\left(x+1 \right) \right)=\left(-1 \right)\cdot \left(-3 \right)\cdot \left(x+1 \right) =3\left(x+1 \right)\]

Тепер розкриємо всі дужки у подвійній нерівності:

Переходимо до подвійної нерівності. На цей раз викладки будуть серйознішими:

\[\left\( \begin(align) & ((x)^(2))+2x-3 \lt -3x-3 \\ & 3x+3 \lt ((x)^(2))+2x -3 \\ \end(align) \right.\]

\[\left\( \begin(align) & ((x)^(2))+5x \lt 0 \\ & ((x)^(2))-x-6 \gt 0 \\ \end( align) \right.\]

Обидві нерівності є квадратними і вирішуються методом інтервалів (бо й кажу: якщо не знаєте, що це таке, краще поки не братися за модулі). Переходимо до рівняння у першій нерівності:

\[\begin(align) & ((x)^(2))+5x=0; \ & x \ left (x + 5 \ right) = 0; \\ & ((x)_(1))=0;((x)_(2))=-5. \\end(align)\]

Як бачимо, на виході вийшло неповне квадратне рівняння, Яке вирішується елементарно. Тепер розберемося з другою нерівністю системи. Там доведеться застосувати теорему Вієта:

\[\begin(align) & ((x)^(2))-x-6=0; \\ & \left(x-3 \right)\left(x+2 \right)=0; \&((x)_(1))=3;((x)_(2))=-2. \\end(align)\]

Зазначаємо отримані числа на двох паралельних прямих (окрема для першої нерівності та окрема для другої):

Знову ж таки, оскільки ми вирішуємо систему нерівностей, нас цікавить перетин заштрихованих множин: $x\in \left(-5;-2 \right)$. Це є відповідь.

Відповідь: $x\in \left(-5;-2 \right)$

Думаю, після цих прикладів схема рішення гранично зрозуміла:

  1. Усамітнити модуль, перенісши всі інші доданки в протилежну частину нерівності. Таким чином, ми отримаємо нерівність виду $\left| f \right| \lt g$.
  2. Вирішити цю нерівність, позбавившись модуля за описаною вище схемою. У якийсь момент потрібно перейти від подвійної нерівності до системи з двох самостійних виразів, кожне з яких можна вирішувати окремо.
  3. Зрештою, залишиться лише перетнути рішення цих двох самостійних висловів — і все, ми отримаємо остаточну відповідь.

Аналогічний алгоритм існує і для нерівностей наступного типу, коли модуль більше функції. Однак там є кілька серйозних «але». Про ці «але» ми зараз і поговоримо.

2. Нерівності виду «Модуль більше функції»

Виглядають вони так:

\[\left| f \right| \gt g\]

Схоже на попереднє? Схоже. Проте вирішуються такі завдання зовсім по-іншому. Формально схема наступна:

\[\left| f \right| \gt g\Rightarrow \left[ \begin(align) & f \gt g, \\ & f \lt -g \end(align) \right.\]

Іншими словами, ми розглядаємо два випадки:

  1. Спочатку просто ігноруємо модуль - вирішуємо нормальну нерівність;
  2. Потім по суті розкриваємо модуль зі знаком мінус, а потім множимо обидві частини нерівності на −1, мене при цьому знак.

У цьому варіанти об'єднані квадратною дужкою, тобто. маємо сукупність двох вимог.

Зверніть увагу ще раз: перед нами не система, а сукупність, тому у відповіді безлічі об'єднуються, а не перетинаються. Це принципова відмінність від попереднього пункту!

Взагалі, з об'єднаннями та перетинами у багатьох учнів суцільна плутанина, тому давайте розберемося в цьому питанні раз і назавжди:

  • "∪" - це знак об'єднання. По суті, це стилізована літера «U», яка прийшла до нас із англійської мовиє абревіатурою від «Union», тобто. "Об'єднання".
  • "∩" - це знак перетину. Ця хрень звідки не прийшла, а просто виникла як протиставлення до «∪».

Щоб ще простіше було запам'ятати, просто прималюйте до цих знаків ніжки, щоб вийшли келихи (ось тільки не треба зараз звинувачувати мене в пропаганді наркоманії та алкоголізму: якщо ви всерйоз вивчаєте цей урок, то вже наркоман):

Різниця між перетином та об'єднанням множин

У перекладі російською це означає таке: об'єднання (сукупність) включає у собі елементи з обох множин, тому не менше кожного їх; а ось перетин (система) включає лише ті елементи, які одночасно знаходяться і в першій множині, і в другій. Тому перетин множин ніколи не буває більше множин-вихідників.

Так стало зрозуміліше? От і відмінно. Переходимо до практики.

Завдання. Розв'яжіть нерівність:

\[\left| 3x+1 \right| \gt 5-4x\]

Рішення. Діємо за схемою:

\[\left| 3x+1 \right| \gt 5-4x\Rightarrow \left[ \begin(align) & 3x+1 \gt 5-4x \\ & 3x+1 \lt -\left(5-4x \right) \\end(align) \ right.\]

Вирішуємо кожну нерівність сукупності:

\[\left[ \begin(align) & 3x+4x \gt 5-1 \\ & 3x-4x \lt -5-1 \\ \end(align) \right.\]

\[\left[ \begin(align) & 7x \gt 4 \\ & -x \lt -6 \\ \end(align) \right.\]

\[\left[ \begin(align) & x \gt 4/7\ \\ & x \gt 6 \\\end(align) \right.\]

Відзначаємо кожну отриману множину на числовій прямій, а потім об'єднуємо їх:

Об'єднання множин

Очевидно, що відповіддю буде $x\in \left(\frac(4)(7);+\infty \right)$

Відповідь: $x\in \left(\frac(4)(7);+\infty \right)$

Завдання. Розв'яжіть нерівність:

\[\left| ((x)^(2))+2x-3 \right| \gt x\]

Рішення. Ну що? Та нічого — все те саме. Переходимо від нерівності з модулем до сукупності двох нерівностей:

\[\left| ((x)^(2))+2x-3 \right| \gt x\Rightarrow \left[ \begin(align) & ((x)^(2))+2x-3 \gt x \\ & ((x)^(2))+2x-3 \lt -x \\\end(align) \right.\]

Вирішуємо кожну нерівність. На жаль, коріння там буде не оч:

\[\begin(align) & ((x)^(2))+2x-3 \gt x; \\ ((x)^(2))+x-3 \gt 0; \& D=1+12=13; \ \ & x = \ frac (-1 \ pm \ sqrt (13)) (2). \\end(align)\]

У другій нерівності теж трохи дичини:

\[\begin(align) & ((x)^(2))+2x-3 \lt -x; \& ((x)^(2))+3x-3 \lt 0; \ & D = 9 + 12 = 21; \ & x = \ frac (-3 \ pm \ sqrt (21)) (2). \\end(align)\]

Тепер треба відзначити ці числа на двох осях — по одній осі кожної нерівності. Однак відзначати крапки потрібно в правильному порядку: чим більше число, тим далі зсув крапку вправо.

І ось тут на нас чекає підстава. Якщо з числами $\frac(-3-\sqrt(21))(2) \lt \frac(-1-\sqrt(13))(2)$ все ясно (доданки в чисельнику першого дробу менше доданків у чисельнику другого , Тому сума теж менше), з числами $\frac(-3-\sqrt(13))(2) \lt \frac(-1+\sqrt(21))(2)$ теж не виникне труднощів (позитивне число свідомо більше негативного), то ось з останньою парочкою все не так однозначно. Що більше: $\frac(-3+\sqrt(21))(2)$ або $\frac(-1+\sqrt(13))(2)$? Від відповіді це питання залежатиме розстановка точок на числових прямих і, власне, відповідь.

Тому давайте порівнювати:

\[\begin(matrix) \frac(-1+\sqrt(13))(2)\vee \frac(-3+\sqrt(21))(2) \- -1+\sqrt(13)\ vee -3+\sqrt(21) \\ 2+\sqrt(13)\vee \sqrt(21) \\\end(matrix)\]

Ми усамітнили корінь, отримали невід'ємні числа з обох сторін нерівності, тому вправі звести обидві сторони квадрат:

\[\begin(matrix) ((\left(2+\sqrt(13) \right))^(2))\vee ((\left(\sqrt(21) \right))^(2)) \ \ 4+4\sqrt(13)+13\vee 21 \\ 4\sqrt(13)\vee 3 \\end(matrix)\]

Думаю, тут і їжу зрозуміло, що $4\sqrt(13) \gt 3$, тому $\frac(-1+\sqrt(13))(2) \gt \frac(-3+\sqrt(21)) (2)$, остаточно точки на осях будуть розставлені так:

Випадок негарного коріння

Нагадаю, ми вирішуємо сукупність, тому у відповідь піде об'єднання, а не перетин заштрихованих множин.

Відповідь: $x\in \left(-\infty ;\frac(-3+\sqrt(21))(2) \right)\bigcup \left(\frac(-1+\sqrt(13))(2 );+\infty \right)$

Як бачите, наша схема чудово працює як для простих завдань, так і для жорстких. Єдине «слабке місце» у такому підході — треба грамотно порівнювати ірраціональні числа (і повірте: це не лише коріння). Але питанням порівняння буде присвячено окремий (і дуже серйозний урок). А ми йдемо далі.

3. Нерівності з невід'ємними «хвістами»

От ми й дісталися найцікавішого. Це нерівності виду:

\[\left| f \right| \gt \left| g \right|\]

Взагалі кажучи, алгоритм, про який ми зараз поговоримо, вірний лише для модуля. Він працює у всіх нерівностях, де ліворуч і праворуч стоять гарантовано невід'ємні вирази:

Що робити із цими завданнями? Просто пам'ятайте:

У нерівностях з невід'ємними «хвістами» можна зводити обидві частини у будь-який натуральний ступінь. Жодних додаткових обмежень при цьому не виникне.

Насамперед нас цікавитиме зведення у квадрат — він спалює модулі та коріння:

\[\begin(align) & ((\left(\left| f \right| \right))^(2))=((f)^(2)); \& ((\left(\sqrt(f) \right))^(2))=f. \\end(align)\]

Ось тільки не треба плутати це із вилученням кореня з квадрата:

\[\sqrt(((f)^(2)))=\left| f \right|\ne f\]

Безліч помилок було допущено в той момент, коли учень забував ставити модуль! Але це зовсім інша історія (це ніби ірраціональні рівняння), тому не зараз у це поглиблюватимемося. Давайте краще вирішимо кілька завдань:

Завдання. Розв'яжіть нерівність:

\[\left| x+2 \right|\ge \left| 1-2x \right|\]

Рішення. Відразу зауважимо дві речі:

  1. Це несувора нерівність. Крапки на числовій прямій будуть виколоті.
  2. Обидві сторони нерівності явно невід'ємні (ця властивість модуля: $ \ left | f \ left (x \ right) \ right | \ ge 0 $).

Отже, можемо звести обидві частини нерівності в квадрат, щоб позбавитися модуля і вирішувати завдання звичайним методом інтервалів:

\[\begin(align) & ((\left(\left| x+2 \right| \right))^(2))\ge ((\left(\left| 1-2x \right| \right) ) ^ (2)); \\ & ((\left(x+2 \right))^(2))\ge ((\left(2x-1 \right))^(2)). \\end(align)\]

На останньому кроці я трохи схитрував: змінив послідовність доданків, скориставшись парністю модуля (по суті, помножив вираз $1-2x$ на -1).

\[\begin(align) & ((\left(2x-1 \right))^(2))-((\left(x+2 \right))^(2))\le 0; \\ & \left(\left(2x-1 \right)-\left(x+2 \right) \right)\cdot \left(\left(2x-1 \right)+\left(x+2 \) right) \right)\le 0; \\ & \left(2x-1-x-2 \right)\cdot \left(2x-1+x+2 \right)\le 0; \\ & \left(x-3 \right)\cdot \left(3x+1 \right)\le 0. \\end(align)\]

Вирішуємо методом інтервалів. Переходимо від нерівності до рівняння:

\[\begin(align) & \left(x-3 \right)\left(3x+1 \right)=0; \((x)_(1))=3;((x)_(2))=-\frac(1)(3). \\end(align)\]

Зазначаємо знайдене коріння на числовій прямій. Ще раз: усі крапки зафарбовані, оскільки вихідна нерівність — не сувора!

Звільнення від знаку модуля

Нагадаю для особливо затятих: знаки ми беремо з останньої нерівності, яка була записана перед переходом до рівняння. І зафарбовуємо області, які потрібні в тій же нерівності. У нашому випадку це $\left(x-3 \right)\left(3x+1 \right)\le 0$.

Ну от і все. Завдання вирішено.

Відповідь: $x\in \left[ -\frac(1)(3);3 \right]$.

Завдання. Розв'яжіть нерівність:

\[\left| ((x)^(2))+x+1 \right|\le \left| ((x)^(2))+3x+4 \right|\]

Рішення. Робимо все те саме. Я не коментуватиму — просто подивіться на послідовність дій.

Зводимо у квадрат:

\[\begin(align) & ((\left(\left| ((x)^(2))+x+1 \right| \right))^(2))\le ((\left(\left) ((x)^(2))+3x+4 \right| \right))^(2)); \\ & ((\left(((x)^(2))+x+1 \right))^(2))\le ((\left(((x)^(2))+3x+4 \right)) ^ (2)); \\ & ((\left(((x)^(2))+x+1 \right))^(2))-((\left(((x)^(2))+3x+4 \) right))^(2))\le 0; \\ & \left(((x)^(2))+x+1-((x)^(2))-3x-4 \right)\times \\ & \times \left(((x) ^(2))+x+1+((x)^(2))+3x+4 \right)\le 0; \\ & \left(-2x-3 \right)\left(2((x)^(2))+4x+5 \right)\le 0. \\\end(align)\]

Метод інтервалів:

\[\begin(align) & \left(-2x-3 \right)\left(2((x)^(2))+4x+5 \right)=0 \\ & -2x-3=0\ Rightarrow x=-1,5; \\ & 2((x)^(2))+4x+5=0\Rightarrow D=16-40 \lt 0\Rightarrow \varnothing. \\end(align)\]

Всього один корінь на числовій прямій:

Відповідь - цілий інтервал

Відповідь: $x\in \left[ -1,5;+\infty \right)$.

Невелике зауваження щодо останнього завдання. Як точно зауважив один мій учень, обидва підмодульні вирази в даній нерівності свідомо позитивні, тому знак модуля можна без шкоди для здоров'я опустити.

Але це вже зовсім інший рівень роздумів та інший підхід його умовно можна назвати методом слідств. Про нього – в окремому уроці. А зараз перейдемо до фінальної частини сьогоднішнього уроку та розглянемо універсальний алгоритм, який працює завжди. Навіть тоді, коли всі попередні підходи виявилися безсилими.

4. Метод перебору варіантів

А якщо всі ці прийоми не допоможуть? Якщо нерівність не зводиться невід'ємним хвостам, якщо усамітнити модуль не виходить, якщо взагалі біль-сум сум?

Тоді на сцену виходить «важка артилерія» всієї математики метод перебору. Стосовно нерівностей з модулем він виглядає так:

  1. Виписати всі підмодульні вирази та прирівняти їх до нуля;
  2. Розв'язати отримані рівняння і відзначити знайдене коріння на одній числовій прямій;
  3. Пряма розіб'ється на кілька ділянок, усередині якого кожен модуль має фіксований знак і тому однозначно розкривається;
  4. Вирішити нерівність на кожній такій ділянці (можна окремо розглянути корені-кордони, отримані в пункті 2 для надійності). Результати об'єднати – це і буде відповідь.

Ну як? Слабко? Легко! Лише довго. Подивимося практично:

Завдання. Розв'яжіть нерівність:

\[\left| x+2 \right| \lt \left| x-1 \right|+x-\frac(3)(2)\]

Рішення. Ця хрень не зводиться до нерівностей виду $ \ left | f \right| \lt g$, $\left| f \right| \gt g$ або $\left| f \right| \lt \left| g \right|$, тому діємо напролом.

Виписуємо підмодульні вирази, прирівнюємо їх до нуля і знаходимо коріння:

\[\begin(align) & x+2=0\Rightarrow x=-2; \\ & x-1 = 0 \ Rightarrow x = 1. \\end(align)\]

Разом у нас два корені, які розбивають числову пряму на три ділянки, всередині яких кожен модуль розкривається однозначно:

Розбиття числової прямої нулями підмодульних функцій

Розглянемо кожну ділянку окремо.

1. Нехай $x \lt -2$. Тоді обидва підмодульні вирази негативні, і вихідна нерівність перепишеться так:

\[\begin(align) & -\left(x+2 \right) \lt -\left(x-1 \right)+x-1,5 \\ & -x-2 \lt -x+1+ x-1,5 \\ & x \gt 1,5 \\end(align)\]

Здобули досить просте обмеження. Перетнемо його з вихідним припущенням, що $x \lt -2$:

\[\left\( \begin(align) & x \lt -2 \\ & x \gt 1,5 \\end(align) \right.\Rightarrow x\in \varnothing \]

Очевидно, що змінна $x$ не може одночасно бути меншою за −2, але більше за 1,5. Рішень на цій ділянці немає.

1.1. Окремо розглянемо прикордонний випадок $x=-2$. Просто підставимо це число у вихідну нерівність і перевіримо: чи виконується вона?

\[\begin(align) & ((\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|)_(x=-2) ) \\ & 0 \lt \left| -3 \right|-2-1,5; \ & 0 \lt 3-3,5; \\ & 0 \lt -0,5 \Rightarrow \varnothing. \\end(align)\]

Очевидно, що ланцюжок обчислень привів нас до невірної нерівності. Отже, вихідна нерівність теж неправильна, і $x=-2$ не входить у відповідь.

2. Нехай тепер $-2 \lt x \lt 1$. Лівий модуль вже розкриється з плюсом, але правий все ще з мінусом. Маємо:

\[\begin(align) & x+2 \lt -\left(x-1 \right)+x-1,5 \\ & x+2 \lt -x+1+x-1,5 \\& x \lt -2,5 \\end(align)\]

Знову перетинаємо з вихідною вимогою:

\[\left\( \begin(align) & x \lt -2,5 \\ & -2 \lt x \lt 1 \end(align) \right.\Rightarrow x\in \varnothing \]

І знову порожня безлічрішень, оскільки немає таких чисел, які одночасно менші за −2,5, але більші за −2.

2.1. І знову окремий випадок: $ x = 1 $. Підставляємо у вихідну нерівність:

\[\begin(align) & ((\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|)_(x=1)) \\ & \left| 3 \right| \lt \left| 0 \right|+1-1,5; \ & 3 \lt -0,5; \\ & 3 \lt -0,5 \Rightarrow \varnothing. \\end(align)\]

Аналогічно попередньому «приватному випадку» число $x=1$ явно не входить у відповідь.

3. Останній шматок прямий: $x \gt 1$. Тут усі модулі розкриваються зі знаком «плюс»:

\[\begin(align) & x+2 \lt x-1+x-1,5 \\ & x+2 \lt x-1+x-1,5 \\ & x \gt 4,5 \\ \end(align)\]

І знову перетинаємо знайдену множину з вихідним обмеженням:

\[\left\( \begin(align) & x \gt 4,5 \\ & x \gt 1 \\end(align) \right.\Rightarrow x\in \left(4,5;+\infty) \right)\]

Ну нарешті то! Ми знайшли інтервал, який і буде відповіддю.

Відповідь: $x\in \left(4,5;+\infty \right)$

Насамкінець — одне зауваження, яке, можливо, убереже вас від дурних помилок під час вирішення реальних завдань:

Розв'язання нерівностей з модулями зазвичай є суцільні множини на числовій прямій - інтервали та відрізки. Набагато рідше зустрічаються ізольовані точки. І ще рідше трапляється так, що меж рішення (кінець відрізка) збігається з межею діапазону, що розглядається.

Отже, якщо кордони (ті самі «приватні випадки») не входять у відповідь, то майже напевно не увійдуть у відповідь і області зліва-праворуч від цих кордонів. І навпаки: кордон увійшов у відповідь — отже, і якісь області навколо неї також будуть відповідями.

Пам'ятайте про це, коли ви перевіряєте свої рішення.

Вирішення нерівностей онлайн

Перед тим як вирішувати нерівності, необхідно добре засвоїти, як вирішуються рівняння .

Не важливо якою є нерівність – суворою () або нестрогою (≤, ≥), насамперед приступають до розв'язання рівняння, замінивши знак нерівності на рівність (=).

Пояснимо, що означає вирішити нерівність?

Після вивчення рівнянь у голові у школяра складається наступна картина: потрібно знайти такі значення змінної, у яких обидві частини рівняння приймають однакові значення. Інакше кажучи, знайти всі точки, у яких виконується рівність. Все правильно!

Коли говорять про нерівності, мають на увазі знаходження інтервалів (відрізків), у яких виконується нерівність. Якщо в нерівності дві змінні, то рішенням будуть не інтервали, а якісь площі на площині. Чи здогадаєтеся самі, що буде рішенням нерівності від трьох змінних?

Як розв'язувати нерівності?

Універсальним способомРозв'язання нерівностей вважають метод інтервалів (він же метод проміжків), який полягає у визначенні всіх інтервалів, у межах яких виконуватиметься задана нерівність.

Не вдаючись у тип нерівності, у разі це суть, потрібно вирішити відповідне рівняння і його коріння з наступним позначенням цих рішень на числової осі.

Як правильно записувати розв'язання нерівності?

Коли ви визначили інтервали розв'язків нерівності, потрібно грамотно виписати саме рішення. Чи є важливий нюанс – чи входять межі інтервалів у рішення?

Тут все просто. Якщо рішення рівняння задовольняє ОДЗ і нерівність є суворим, межа інтервалу входить у рішення нерівності. Інакше – ні.

Розглядаючи кожен інтервал, рішенням нерівності може бути сам інтервал, або напівінтервал (коли одна з його кордонів задовольняє нерівності), або відрізок – інтервал разом із його межами.

Важливий момент

Не думайте, що розв'язанням нерівності можуть бути лише інтервали, напівінтервали та відрізки. Ні, у рішення можуть входити і окремі точки.

Наприклад, у нерівності |x|≤0 лише одне рішення – це точка 0.

А в нерівності | x |

Навіщо потрібен калькулятор нерівностей?

Калькулятор нерівностей видає правильну підсумкову відповідь. При цьому здебільшого наводиться ілюстрація числової осі або площини. Видно, чи входять межі інтервалів у розв'язання чи ні – крапки відображаються зафарбованими чи проколотими.

Завдяки онлайн калькуляторунерівностей можна перевірити, чи правильно ви знайшли корені рівняння, позначили їх на числовій осі та перевірили на інтервалах (і межах) виконання умови нерівності?

Якщо ваша відповідь розходиться з відповіддю калькулятора, то однозначно потрібно перевірити ще раз своє рішення і виявити допущену помилку.

Чим більше людина розуміє, тим сильніше в ньому бажання розуміти

Хома Аквінський

Метод інтервалів дозволяє вирішувати будь-які рівняння, що містять модуль. Суть цього в тому, щоб розбити числову вісь на кілька ділянок (інтервалів), причому розбити вісь потрібно саме нулями виразів, які у модулях. Потім на кожному з ділянок, що вийшли, всяке підмодульне вираз або позитивно, або негативно. Тому кожен із модулів може бути розкритий або зі знаком мінус, або зі знаком плюс. Після цих дій залишається лише вирішити кожне з отриманих простих рівнянь на інтервалі, що розглядається, і об'єднати отримані відповіді.

Розглянемо цей спосіб на конкретному прикладі.

|х + 1| + | 2x - 4 | - | X + 3 | = 2x - 6.

1) Знайдемо нулі виразів, що стоять у модулях. Для цього потрібно прирівняти їх до нуля, і вирішити отримані рівняння.

x + 1 = 0 2x - 4 = 0 x + 3 = 0

x = -1 2x = 4 x = -3

2) Розставимо точки, що вийшли, в потрібному порядку на координатній прямій. Вони розіб'ють усю вісь на чотири ділянки.

3) Визначимо на кожному з ділянок, що вийшли, знаки виразів, що стоять у модулях. Для цього підставляємо в них будь-які числа з інтервалів, що нас цікавлять. Якщо результат обчислень – число позитивне, то таблиці ставимо «+», і якщо число негативне, то ставимо «–». Це можна зобразити так:

4) Тепер вирішуватимемо рівняння на кожному з чотирьох інтервалів, розкриваючи модулі з тими знаками, які проставлені в таблиці. Отже, розглянемо перший інтервал:

I інтервал (-∞; -3). На ньому всі модулі розкриваються зі знаком "-". Отримаємо наступне рівняння:

-(x + 1) – (2x – 4) – (-(x + 3)) = 2x – 6. Наведемо подібні доданки, розкривши попередньо дужки в отриманому рівнянні:

X - 1 - 2x + 4 + x + 3 = 2x - 6

Отримана відповідь не входить у інтервал, що розглядається, тому в остаточну відповідь писати його не треба.

II інтервал [-3; -1). У цьому інтервалі у таблиці стоять знаки «–», «–», «+». Саме так і розкриваємо модулі вихідного рівняння:

-(x + 1) – (2x – 4) – (x + 3) = 2x – 6. Спростимо, розкривши при цьому дужки:

X – 1 – 2x + 4 – x – 3 = 2x – 6. Наведемо в отриманому рівнянні такі:

x = 6/5. Отримане число не належить інтервалу, що розглядається, тому воно не є коренем вихідного рівняння.

III інтервал [-1; 2). Розкриваємо модулі вихідного рівняння з тими знаками, що стоять малюнку в третій колонці. Отримуємо:

(x + 1) – (2x – 4) – (x + 3) = 2x – 6. Позбавимося дужок, перенесемо доданки, що містять змінну x у ліву частину рівняння, а не містять x у праву. Матимемо:

x + 1 – 2x + 4 – x – 3 = 2x – 6

У аналізований інтервал число 2 не входить.

IV інтервал)